Drivers of Cost & Price for Dredging

An Introduction to Some of the Factors Affecting Price For the Non-Contractor

Jim McNally
Manson Construction Co.
VP, West Coast Dredging Manager

- 1. Anticipated Contractor Costs
- 2. Perceived Risk
- 3. Market Conditions

1. Anticipated Contractor Costs

- Mobilization Cost
 - Fixed Cost, higher quantities drive mob cost per yard down
- Daily Cost
 - Equipment Capital Cost Recovery (Capex, Recovery Period, Days/yr)
 - Labor, Fuel, Maint & Wear, Overheads
- Daily Estimated Production: Pay cubic yards per day
 - Unit Cost = Daily Cost (\$/day) / Estimated Daily Production (pay cys/day) = \$/cy
 - > Ex: \$75,000 per day divided by 7,500 cys/day = \$10/cy
 - > Ex: \$75,000 per day divided by 3,250 cys/day = \$20/cy

2. Perceived Risk

3. Market Conditions

1. Anticipated Contractor Costs

2. Perceived Risk

- o Production Variation (Estimated vs. Actual)
 - o Soils Data, other information to reduce uncertainty
- o Re-Work
- o Unanticipated Non-Recoverable Costs
 - Delays
 - Equipment Damage
 - ➤ Third Party Claims
 - ➤ Permit Compliance Risk, environmental incidents

3. Market Conditions

- 1. Anticipated Contractor Costs
- 2. Perceived Risk
- 3. Market Conditions
 - Bid History
 - The Level of Competition
 - Location and Availability of Competitor Equipment
 - Competitors Estimated Cost
 - Last Step Mark-up (Profit)

Impact of Anticipated Utilization

Scenaio	o 1- Positive Outlook		Scenario 2- Un	Scenario 2- Uncertain Outlook	
Capital Equipment Newbuild Cost	\$35,000,000		\$35,000,000		
Capital Recovery Period	20 yr		5)	yr	
Cost of Money	7%		7%		
Annual Capital Cost	\$2,600,000		\$6,600,000	_	
Anticipated Average Annual Op Days	200		120	_	
Daily Capital Cost Allocation	\$13,000	12%	\$55,000	35%	
Labor	\$25,000	24%	\$25,000	16%	
Fuel, Maint & Wear	\$35,000	33%	\$35,000	22%	
Field Overhead	\$10,000	9%	\$10,000	6%	
Home Office Overhead	\$12,450	12%	\$18,750	12%	
Profit	\$10,000	9%	\$14,000	9%	
Total Daily Cost	\$105,450	100%	\$157,750	100%	
Expected Production	7,500 (cys/day	7,500	cys/day	
Unit Price	\$14	<u> </u>	\$21 150%		

How Owners, Planners & Designers Can Reduce Their Dredging Costs

- Reduce Contractor Cost
 - o Pursue Lowest Cost Disposal Options In Permitting Phase
 - o Maximize Contractors Production Rate
 - Cut Geometry (Productive Available Dig Face-AM)
 - > Avoid Workhour and Work Window Restrictions
 - Consistent and Dependable Equipment Types Required
- Reduce Contractors Perceived Risk
 - Applying Dependable & Consistent Measurement, Payment and Acceptance Terms
 - Insist on Permit Expectations that are Achievable
- 3. Maximize Competition
 - Avoid Restrictions on Equipment Type
 - Avoid Set-Asides

Potentially Avoidable Drivers of Dredging Cost Increases

- 1. Poor Cut Geometry (chasing very low dig face)
- 2. Inconsistent and Uncertain Disposal Schemes Driving Varying Equipment Requirements year to year
- 3. Uncertainty in regard to future equipment requirements and available workload
- 4. Work Windows
- 5. Upland Disposal (as compared to upland beneficial reuse)
- 6. Uncertainty in regard to achievability of permit requirements
- 7. Uncertainty in measurement / payment / acceptance criteria
- 8. Limiting Equipment Types
- 9. Limiting competition via SB set aside.

Recent Examples of Expensive Dredging

I. 70,000 cubic yards of upland disposal

- > \$120 per cubic yard (total cost +/- \$9 million)
- UXO screening to one inch (on limited landside footprint)
- ➤ Disposal at for profit landfill, competing with municipal garbage disposal (>\$60/cy in tipping fees)

II. 200,000 cubic yards of Maintenance Material

- >\$31 per cubic yard overall...with mob (total cost > 6 million)
- ➤ In-Water Disposal Site 60 nautical miles away
- > 87,000 cys above grade over 3.5 million ft2 (Less than 0.7 ft avg req'd face)
- ➤ Requires ABS Load-Lined Barges but competition limited by SB set aside.

Take Aways

- 1. Owners and Stakeholders Can Influence Dredging Prices
- 2. Confidence in the Out-year Requirements Facilitates the Investment that Leads to Greater Efficiency and Competition
- 3. Windows are Expensive (reducing annual operating days)
- 4. Promote clarity in achievable, measurable, enforceable and necessary Requirements
- 5. Use tools like advance maintenance templates to forestall dredging until a productive cut is available.
- 6. Maximize Competition by avoiding windows, set-asides and equipment type restrictions.