

Analysis of Morphologic Effects for Maintenance of Navigation Channels in Tidal Estuaries & River Deltas

Joel Darnell
Vladimir Shepsis
Will Templeton

October 24, 2014

Outline of Presentation

- Morphology Analysis
- Example 1 Grays Harbor, WA
- Example 2 West Channel, Ilwaco, WA
- General Conclusions

Principals of Morphology Analysis

- Collect/ compile reliable data (bathymetry, etc.)
- Analyze and confirm spatial patterns
- Evaluate trends that change with time

Outline of Presentation

- Morphology Analysis
- Example 1 Grays Harbor, WA
- Example 2 West Channel, Ilwaco, WA
- General Conclusions

Grays Harbor Federal Navigation Channel

Inner Harbor Dredging ~ 1.1 Million CY/Year

Grays Harbor Federal Navigation Channel

Inner Harbor Dredging ~ 1.1 Million CY/Year

Sediment Discharge from Chehalis River

Chehalis River at Porter, WA

Monthly Statistics of Flow & Sediment Discharge

Notes:

- (1) Long-term data shows consistent pattern between sediment and flow discharge
- (2) Maximum sediment & flow discharge typically occurs in January

Solution to Problem of Rapid Shoaling

- Forecast anticipated sedimentation in advance to prioritize dredging areas
- Modify existing practices to a twice-dredging scenario
 - Initial dredging at beginning of dredging window to provide navigable depth

Grays Harbor Federal Navigation Channel

Inner Harbor Dredging ~ 1.1 Million CY/Year

Outline of Presentation

- Morphology Analysis
- Example 1 Grays Harbor, WA
- Example 2 West Channel, Ilwaco, WA
- General Conclusions

Project Location – West Channel

West Channel Dredging Summary

West Channel Dredging Summary

Problem Shoaling Areas

Sedimentation Patterns, 2005 - 2006

Sedimentation Patterns, 2013 - 2014

Sedimentation Patterns & Trends

- It appears that sedimentation in some areas of the South Channel results from meandering of the tidal channel
- It is possible that slight re-alignment of the channel may reduce maintenance dredging requirements
- It appears that the pattern of sedimentation in the Channel is relatively constant from year to year. Highest rates of sedimentation mostly occurs at the same areas.
- Deeper dredging depth at some locations may result in higher rates of sedimentation
- It is possible that there is a depth of equilibrium relatively stable depth) at some locations along the channel. For significant length of the channel this depth of equilibrium is deeper than 15 ft.

Potential Channel Realignment

Conclusions

- Tidal estuaries and river deltas are dynamic
- Planning and design of maintenance dredging must also be dynamic
- Understanding and working with natural processes allows for dredging where its needed most.
- Maintenance dredging provides opportunity to learn and test different approaches with can help with larger scale projects including deepening.
- Collection of adequate survey data, including areas outside of the authorized channel is needed but not often available.

