

Management of Dredged Debris during the Gowanus Canal Pilot Study

Darrell Nicholas, PE

Geosyntec consultants







Authors: Darrell Nicholas, PE: Jeremy Gasser, PE; Panos Andonyadis, PE; Dave Himmelheber, PhD, PE 10th International Conference on Remediation & Management of Contaminated Sediments February 11-14, 2019, New Orleans, LA





#### **Presentation Preview**



- Gowanus Canal Brief History and Background
- Major Remedial Design Components
- Debris Sources and Investigation Results
- Debris Removal Pilot Study
- Archaeological Evaluations
- Environmental Monitoring
- Design & Construction Impacts



### Gowanus Canal Early History







Canal authorized: 1848

Construction and draining of wetlands: 1853 – 1869

Terminus of Erie Canal transportation system

Raw material for commerce and industries

Finished goods to Western USA











#### Gowanus Canal - The Legacy of a Nation's Growth





Generals Carel - 1933 photograph by Seymon "Zee" Zoknorife

- Rapid development 1870 to 1920s
- Peak operation 25,000 vessel trips/year
- 60 dock facilities, dozens of industries
- Declining barge traffic with the rise of trucking
- Last Dredging in 1950s



INDUSTRIES OF GOWANUS CANAL (CA. 1942)





# Gowanus Canal Superfund Site Today's Urban Setting





## Gowanus Canal Superfund Site EPA Actions



- PAHs
- Heavy Metals
- PCBs
- Sewage





- Mar 2010
  - **National Priorities List**
- Jan 2011
  - **Remedial Investigation**
- Dec 2012Feasibility Study
- Sept 2013

**Record of Decision** 



# Gowanus Canal Superfund Site Major Remedy Components







- Dredging
- Bulkhead repairs
- Ex-situ treatment
- Dredge water treatment
- In-situ stabilization
- Capping





### 4th Street Turning Basin Pilot Study



#### □ Comprehensive Pilot Study

- Site Staging, Debris Removal, Bulkhead Installation, Dredging, Sediment Processing & Disposal, Water Treatment, Capping
- 1. Test different equipment, means and methods
- 2. Confirm design assumptions and validate approaches
- 3. Evaluate environmental monitoring approaches for water quality and air/odor quality
- 4. Develop community confidence in the remedy











#### **Our Experience:**

Failure to consider debris removal impacts is one of the single largest cause of significant cost and budget overruns on sediment remediation projects.





07/23/2009



#### Design Considerations - Debris Sources





Shipwrecks

Scrapyards

- Failing Bulkheads
- Piers, Piling, Docks
- CSOs
- Demolition
- Open Dumping





## 2016 High Resolution Side Scan Sonar Imagery







## 2016 Survey Target Details





#### Submerged Potential Cultural Resources



Three potential cultural resources identified in 2010 sonar survey 31b: Rectangular 31: Small vessel\* feature \*Note: Target 31 migrated south from its location at mouth of canal observed in 2010 to the location shown 31a: Sunken Boat Hull above



#### Key Objectives - Debris Removal Pilot Test



- 1. Clear large obstructions from 4<sup>th</sup> Street Turning Basin which prevent navigational access
- 2. Evaluate different equipment types to efficiently remove debris and evaluate processes for managing debris:
  - a. Debris cleaning handling & storage
  - b. Archaeological profiling
  - c. Water treatment and reuse
  - d. Limited sediment processing
- 3. Evaluate environmental monitoring approaches for water quality and air/odor quality



#### Assessment of Potential Cultural Resources



## Historical assessment conducted in 2016 (AHRS)

- 31: Small Vessel
  - Metal motor boat
  - Migrated south since 2010 survey
- 31a: Sunken Boat Hull
  - Former WWII era "crash boat"
- 31b: Rectangular Feature
  - Appears to be related to collapsed bulkhead
- No objects of significant archaeological value
- None are eligible for listing in the National Register of Historic Places









#### Debris Removal Targets



### The following debris removed during the pilot study:

- Large debris items identified in 2016 survey
- Debris fields at the mouth of the 4th Street Turning Basin
  - Determine nature and extent of buried debris
  - Compare actual versus predicted volumes

## Removal Targets: 2016 Survey Large Debris



Large debris items (> 5 feet in any dimension) will be

removed

#### 36 targets:

- 2 wrecks
- 8 pilings
- 1 tree
- 25 other



Tires will be removed and managed separately



### Large Debris Removal



- Removal of 36 large debris targets and 10 tires
- Evaluation of 5-tined grapple and rake

| Attachment | Targets<br>Attempted | Targets<br>Removed | Removal<br>Rate | Total Duration (min) | Duration per<br>Target (min) |
|------------|----------------------|--------------------|-----------------|----------------------|------------------------------|
| Grapple    | 14                   | 10                 | 71%             | 165                  | 12                           |
| Rake       | 32                   | 21                 | 66%             | 450                  | 14                           |







- Debris Fields: Large swaths of Canal bottom that are filled with debris targets
- Debris fields identified in 2015 and 2016 surveys that obstruct navigation and potentially affect bulkhead construction







- Evaluate actual versus estimated debris coverage in the debris field at mouth of turning basin
  - Use 2-ft deep bucket cuts
  - Preliminary volume calculations based on side scan coverage estimates
  - Refine volume calculations after preliminary cuts
- Determine nature and extent of debris buried below the sediment surface





- 250 cubic meters (CM) of sediment/debris removed
- Evaluated two bucket types
  - 1.1 CM environmental
  - 1.9 CM conventional
- Evaluated three scow loading techniques

10-cm screen

Directly into scow

10-cm grizzly bars







#### Debris Field Removal



| Production Evaluation                      | Scow 1 | Scow 2 | Scow 3 | Scow 4 |
|--------------------------------------------|--------|--------|--------|--------|
| Scow Volume (CM)                           | 55     | 60     | 68     | 70     |
| Total AVG Cycle Time (sec)                 | 193    | 92     | 127    | 137    |
| Total Scow Load Time (hr)                  | 4.5    | 2.8    | 2.7    | 3.6    |
| Total Lost Time (hrs)                      | 2.2    | N/A    | N/A    | 0.6    |
| Total Scow Time w/ Material Rehandle (hrs) | 4.5    | 3.3    | 3.2    | 3.6    |
| Percent Buckets w/ Lost Time               | 44%    | N/A    | N/A    | 19%    |
| Average Bucket Percentage                  | 58%    | 40%    | 47%    | 38%    |

- Extended cycle times associated with loading scows through a screen
- Negligible difference between direct loading plus rehandling and loading directly through grizzly bars



# In-barge Sediment & Debris Processing Archaeological Evaluation

- All debris offloaded to an asphalt pad for inspection
- Sediment stabilized with Portland cement
- All material discarded at permitted landfills
- Limited quantities of recyclable

material









# Off-site Sediment Processing & Debris Removal Archaeological Evaluation















- Silt curtain during large debris removal
- Air curtain during debris field removal
- Noise monitoring
- Air monitoring
- Water quality monitoring
  - Turbidity buoys
  - Turbidity/TSS measurements









## Plume Generation and Turbidity



| Description of In-Canal Activity                         | AVG Turbidity<br>in Plume (NTU) | MAX Turbidity in<br>Plume (NTU) | AVG Distance from<br>Source of Sediment<br>Resuspension (m) | Number of<br>Measurements |
|----------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------|---------------------------|
| Large Debris Removal with Grapple                        | 21.8                            | 25.0                            | 18                                                          | 2                         |
| Large Debris Removal with Rake                           | 23.6                            | 32.0                            | 18                                                          | 4                         |
| Debris Field Removal with Environmental Clamshell Bucket | 9.9                             | 26.9                            | 9                                                           | 87                        |
| Debris Field Removal with Conventional Clamshell Bucket  | 16.8                            | 27.1                            | 13                                                          | 35                        |
| Movement of Barges with Push Boat                        | 46.3                            | 155                             | 30                                                          | 28                        |



#### Observations from TB4 Dredging



#### Large amounts of debris encountered

- Debris vertically distributed throughout the soft sediment
- Pilot study removed about 3,500 CY of debris
- Debris was roughly 5% of the total volume removed excluding shipwrecks

#### Debris Separation and Sediment Processing

- Multiple 4" vibrating deck screen used off-site at Clean Earth
- 6" grizzly used with in-barge mixing process.







### Obstructions and Conventional Pile Driving



- Conventional pile driving: Vibratory hammers and impact hammers
- Limitations to handling obstructions
  - Shallow obstructions, less than 10' below the mudline, could be removed
  - Sheet piles cannot penetrate through materials such as concrete, timber, or steel
  - Deep obstructions often cannot be removed
  - Often the wall alignment becomes impacted to avoid obstructions that cannot be removed
  - Attempting to drive through obstructions can generate high levels of vibrations



#### Obstructions and Hydraulic Pile Press



- Hydraulic press system tested to push and advance a sheet pile to target depths
- Attachments such as a water jet or auger can be used to assist the press process
- Limitations to handling obstructions
  - The press has a limit of downward pressing force
  - Press is less capable of breaking or advancing past obstruction than the conventional methods
  - The press method may push obstructions with the pile if the ground is soft
  - The auger attachment can help break through concrete debris



Photo: Hydraulic press setting a pile



#### Obstructions and Lessons Learned - Hydraulic Pile Press



- Penetrating obstructions with an auger attachment
  - Auger can handle some obstructions, but can be damaged
  - Adds significant time to the pile driving operation
- Pile maneuvering
  - An operator can make adjustments to maneuver around obstructions
  - Only applicable if limited movement clears an obstruction



Photo: Auger damaged during drilling through obstructions





- Gowanus Environmental Remediation Trust
- Sevenson Environmental Services
- Archaeology and Historic Resources Services
- Clean Earth
- Local Residents and Businesses













Questions?



Darrell Nicholas, P.E.

Email: dnicholas@geosyntec.com

Phone: (865) 291-4706

Licensed in FL







