

Software

Robert Ramsdell

Robert.Ramsdell@DredgingResources.net

Safety Moment

HIGH PRESSURE PIPE LINE

Introduction

- Theory Refresher
- Dredge Pumps
- Dredge Pumping System
- The Excel Spreadsheet
- DHLLDV Software Overview & Installation
- Using the Software
- How Can You Help?

Chapters 1 – 5 are the theoretical background

- Pressure losses in pipe (Darcy-Weisbach etc)
- Particle settling velocities
- Initiation of motion & sediment transport
- Sand/Shell mixtures
- Chapter 6 is an overview of historical models
 - Durand & Condolios, Fuhrboter, Wasp, Wilson, and many more!
- Chapter 7 derives the DHLLDV theory
- Chapter 8 presents how to implement the model

https://www.researchgate.net/publication/330753872_The_Delft_Head_Loss_Limit_Dep osit_Velocity_Framework_2nd_Edition

Theory - Concentrations

- $C_{v} = \frac{\rho_m \rho_l}{\rho_s \rho_l}$
 - ho_m is the slurry density (ton/m³)
 - ρ_l is the fluid density (0.998 for water, 1.025 for salt water)
 - ρ_s is the solids density (2.65 for sand & gravel)
- C_{vs} = In-pipe Concentration
- C_{vt} = Transported Concentration, relative to solids density
- $C_{vi} = \frac{\rho_m \rho_l}{\rho_i \rho_l} =$ Insitu volume concentration
 - ρ_i is the insitu (in place) density including porewater (1.85 2.05 for sand)
- Production = Q * C_{vi} where Q (m³/hour) is the total flow rate

REDGING RESOURCES Theory – Head and Pressure

Head is a measure of pressure with the units of length (??)

It is convenient for talking about the energy (potential & kinetic) in a piece of pipe 1 psi = 2.31 ' of head (of what?) 0.098 bar = 9.8 kPa = 1m head

The Pipeline System

- Starts with an entrance
- Consists of alternating pipe sections and pumps
- Pipe segments have varied diameters and fittings
- Pumps may be the same or different
- Elevations must be taken into account

Pressure in the Pipe

From Model to Software

DHLLDV_Framework.xlsm

🗶 D	HLLDV F	ramework.xlsm	`
-----	---------	---------------	---

𝒫 Search

Robert.Ramsdell@DredgingResources.net

🖓 Commer

File Home Insert Draw Page Layout Formulas Data Review View Developer Help Acrobat

C68 \checkmark : $\times \checkmark f_x$ 3.35454454527339

https://github.com/rcriii42/DHLLDV/tree/master/DHLLDV Framework xlsm

DHLLDV_Framework.xlsm

https://github.com/rcriii42/DHLLDV/tree/master/DHLLDV Framework xlsm

The DHLLDV Software

Open Source Written in Python Hosted on GitHub Tested

Ho

Goals (Why use MY code?)

- Accessible
 - Easy to Use
 - Importable
 - Unincumbered
 - Long-lived
- Reliable
 - Correct
 - Secure
 - Verifiable

Accessibility

Written in Python (3.10+)

- Simple clear syntax
- "The programmer's time is as important as the computer's"
- Quick write-run-rewrite
 cycle
- "Batteries included"
- Lots of third party libraries and tools

Hosted on Github

- Public and Private repositories
- Source control
- Issue Tracker
- Multi user workflow
- Security updates
- Wiki & Discussions

EG

https://github.com/rcriii42/DHLLDV

Accessible – Open Source

- Free redistribution
- Source code available
- Derivatives allowed
- No limitations on use
- Gives back to the community!

Celebrating 40 Years

of the GNU Project and Software Freedom!

Coding Standards

PS C:\Users\Rober> python

Python 3.11.5 (tags/v3.11.5:cce6ba9, Aug 24 2023, 14:38:34) [MSC v.1936 Type "help", "copyright", "credits" or "license" for more information. >>> import this The Zen of Python, by Tim Peters

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!

- Underlying framework in SI units, viewer does conversions
- PEP 8 style guidelines: <u>https://peps.python.org/pep</u> -0008/
- PEP 257 Docstring Conventions: <u>https://peps.python.org/pep</u> -0257/
- No type annotations

What you'll need:

🔰 Windows PowerShell 🛛 🛛 🗡

Interrupted, shutting down

(venv) PS C:\Users\Rober\PycharmProjects\DHLLDV> bokeh serve 2023-09-27 19:37:24,429 Starting Bokeh server version 3.0.3 2023-09-27 19:37:24,745 User authentication hooks NOT provide 2023-09-27 19:37:24,750 Bokeh app running at: http://localho 2023-09-27 19:37:24,750 Starting Bokeh server with process if Import Error: Custom Dredge setups not found. To use, create """Custom setups for My Project"""

import copy

from DHLLDV.PipeObj import Pipeline, Pipe
from ExamplePumps import Ladder_Pump, Main_Pump, base_slurry

my_slurry = copy.deepcopy(base_slurry) my_slurry.D50 = 0.4/1000 # Set the GSD to medium sand

setup_to_use = "My Dredge" # Update this with the pipeline so setups = {"My Dredge": Pipeline(pipe_list=[Pipe('Entrance', A Pipe(diameter=0.6 copy.copy(Ladder_| Pipe('MP Suction' copy.copy(Main_Pup Pipe('MP Discharge', Slurry=my_slurry),

2023-09-27 19:37:26,378 WebSocket connection opened 2023-09-27 19:37:26,379 ServerConnection created

In 🛅 (2 🕎 R | 🕎 R | 🛆 D | 🚼 4! | 🗄 Ti | 🔴 Pi 🔿 X G hi | 🗞 It | 🚳 Si | 📈 V | R⁶ R | G b | G b | G b | G V | 🛇 V | 🖓 D | G gi | 🖓

← → C ☆ 🌢 github.com/rcriii42/DHLLDV

BHLLDV Public

🗰 Apps 🚦 LLC 🧧 USACE 🧧 programming 🕕 TimeSheet 📒 finance 📀 4b-5 on buyspeed.... 📒 Tipper 📒 Safety 🐵 Up-and-Coming Ba... 🔴 Projectmates -

<> Code 💿 Issues 11 🕴 Pull requests 😡 Discussions 💿 Actions 🖽 Projects 🕮 Wiki 😲 Security 🗠 Insights 🕸 Settings

<mark>ያ master - ያ 1</mark> branch 💿 2 t	ags		Go to file	Add file -	<> Code -	
rcriii42 Ensure valid filename whe	n '.xlsx' present	L	ocal	Code	spaces	
DHLLDV_Framework_xlsm	Fix typo	▶ Clone			(?)	
DHLLDV_viewer	Ensure valid filename when '.xls	HTTPS SSH GitHub CLI				
Scripts	PEP 8	https://github.com/rcriii42/DHLLDV.git			C	
src	More PEP 8	Use Git or che	ckout with SVN usir	ng the web URL.		
tests	More PEP 8	(낮) Open w	ith GitHub Deskt	top		
🗅 .gitignore	Ignore build and dist directorie	-		•		
	Initial commit	Download ZIP				

https://github.com/rcriii42/DHLLDV

Q Type [7] to search

☆ Pin
③ Unwatch 1

RESOURCES Installation (follow along!)

Assuming you have Python installed!

- Open command window
- Navigate to your desired location (root is fine) 2.
- Clone the repository: 3.

git clone https://github.com/rcriii42/DHLLDV.git DHLLDV2

- Create the virtual environment: python -m venv . \venv 4.
- Start the virtual environment: venv\scripts\activate.ps1 5.
- Download requirements: pip install -r requirements.txt 6.
- 7. RUN tests: pytest --cov-report term-missing --cov=DHLLDV
- Start the viewer: bokeh serve .\DHLLDV viewer\ --show 8.

Code Sample

The equation for the terminal settling

😴 heterogeneous.py

heterogeneous.py - heterogeneous transport model.
Created on Feb 21, 2015
@author: <u>rcriii</u>
<pre>from .DHLLDV_constants import gravity, Arel_to_beta, musf, particle_ratio</pre>
from . import homogeneous
14 usages 🚨 Robert Ramsdell
def vt_ruby(d, <u>Rsd</u> , nu, <u>K=0.26</u>):
"""vt_ruby - terminal settling velocity via the Ruby & Zanke formula (eqn 8.2-2)
d particle diameter (m)
Rsd relative solids density
nu fluid kinematic viscosity in m2/sec
k particle shape factor (sand = 0.26) (not used, included for compatibility """
right = 10 * nu / d
left = (1 + (Rsd * gravity * d**3) / (100 * nu**2))**0.5 - 1
return right * left # Eqn 8.2-2

Using the Software

Top Bar

- Pipeline chooser
- Unit conversions
- Open/save to Excel
- Stop Button

Slurry Tab

- Pipe Diameter
- Fluid
- Grain size distribution
- Density and Concentration
- i_m graph
- E_{rhg} Graph

Pipeline Tab

- Pipeline layout
- Slurry details
- System Head plot
- Minimum Friction Point

Dredging Association

- Operating Point
- Pressure Gradeline

Unit Tests

- Isolate each part of the program and show that individual parts are correct
- Write tests before underlying code
- Tests pass before moving on.

Western Dredging Association

THE UNIT TESTS ARE

WRONG

WHAT IF MY CODE IS FINE

What are we testing?

Hydraulic gradient L. I, vs. Line sp

Relative excess hydraulic gradient E., vs. Line speed v

REFACTORED SOME STUFF

UNIT TESTS PENDING....

ilon, nu, rhol, rhos, Cvs): lue for homogeneous flow. 3) correction for slurry density. d: Particle diameter in m (not used, here for 80 epsilon: pipe absolute roughness in m nu: fluid kinematic viscosity in m2/sec 81 82 rhol: fluid density in ton/m3 83 Cvs - spatial (insitu) volume concentration of solids 84 11.11.11 Re = pipe_reynolds_number(vls, Dp, nu) lambdal = swamee jain ff(Re, Dp, epsilon) Rsd = (rhos-rhol)/rhol rhom = rhol+Cvs*(rhos-rhol) deltav to d = min((11.6*nu)/((lambdal/8)**0.5*vls*d), 1) #ean 8.7-7 90 91 sb = ((Acv/kvK)*log(rhom/rhol)*(lambdal/8)**0.5+1)**2 92 top = 1 + Rsd * Cvs - sb93 bottom = Rsd*Cvs*sb 94 il = fluid_head_loss(vls, Dp, epsilon, nu, rhol) return il*(1-(1-top/bottom)*(1-deltav to d)) #egn 8.7-8 95

Code Coverage

Haggis has a **hole** in his roof. He never fixed it because on rainy days it is too wet to work. And on sunny days it doesn't need fixing. Make sure testing is comprehensive

• Find lines that are not tested

Currently at 87%

 Low % due to heavy development of:

- DriverObj
- PipeObj
- PumpObj

How can You Help?

- Use the Library
- Email problems, requests, and ideas <u>Robert.Ramsdell@dredgingresources.net</u>
- Better: Raise issues: https://github.com/rcriii42/DHLLDV/issues
- Best: Submit patches!
- រ៉េ 0 Open 🗸 5 Closed
- 11 Update PipeObj.py

#25 by enginlove was closed on Jan 3

🎦 fix eqn typo

#17 by enginlove was merged on Aug 17, 2022

✤ Bump pillow from 8.3.1 to 8.3.2 dependencies

#16 by dependabot (bot) was merged on Sep 9, 2021

Patch - Fixed Error

✓ ♣ 4 ■■■■ src/DHLLDV/DHLLDV_framework.py □

	0	66	-211,7 +211,7 @@ def slip_ratio(vls, Dp, d, epsilon, nu, rhol, rhos, Cvt):
211	211		
212	212		<pre>Re = homogeneous.pipe_reynolds_number(vls, Dp, nu)</pre>
213	213		<pre>lambda_1 = homogeneous.swamee_jain_ff(Re, Dp, epsilon)</pre>
214		-	<pre>Xi_HeHo = 8.5*(1/lambda_l)*(vt/(gravity*d)**0.5)**5/3*((nu*gravity)**(1/3)/vls)*(vt/vls) # Eqn 8.12-1</pre>
	214	+	Xi_HeHo = 8.5*(1/lambda_1**0.5)*(vt/(gravity*d)**0.5)**(5./3)*((nu*gravity)**(1/3)/vls)*(vt/vls) # Eqn 8.12-1
215	215		
216	216		alpha = 0.58*Cvr**-0.42
217	217		ex1 = -(0.83 + stratified.musf/4 + (Cvr - 0.5 - 0.075*Dp)**2 + (0.025*Dp))
	0	@@	-221,7 +221,7 @@ def slip_ratio(vls, Dp, d, epsilon, nu, rhol, rhos, Cvt):
221	221		vls_t = (5 * exp(ex1 * ex2)) ** 0.25 * vls_ldv # Eqn 8.12-7
222	222		
223	223		Kldv = 1/(1 - Xi_ldv) # Eqn 7.9-14
224		-	<pre>Xi_fb = 1-((Cvt*vls_ldv)/(Cvb-Kldv*Cvt)*(vls_ldv-vls)+Kldv*Cvt*vls_ldv) # Eqn 8.12-3</pre>
	224	+	<pre>Xi_fb = 1-((Cvt*vls_ldv)/((Cvb-Kldv*Cvt)*(vls_ldv-vls)+Kldv*Cvt*vls_ldv)) # Eqn 8.12-3</pre>
225	225		
226	226		ex2 = Dp ** 0.025 * (vls / vls_lsdv) ** alpha * Cvr ** 0.65 * (Rsd / 1.585) ** 0.1
227	227		Xi_3LM = (1 - Cvr) * exp(ex1 * ex2) # Eqn 8.12-4
	65		

They answered, "Why be scared of a hat?"

My drawing was not a picture of a hat. It was a picture of a boa constrictor digesting an elephant. Then I drew the inside of the boa constrictor, so the grown-ups could understand. They always need explanations. My drawing Number Two looked like this:

