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Goals & Targets
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Pump/Pipeline System
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• Total pressure/power required
• Limit (Stationary) Deposit Velocity
• Cavitation limit of each pump
• Deposition/plugging the pipeline



Pressure/Flow Graph (Q-H Graph)
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• Working points/working area in a stationary situation



Determining Slurry Transport 
Behavior 

Based On Known Parameters 
Like:

Liquid Properties, 
Pipe Diameter, 

Particle Diameter, 
Volumetric Concentration

As A Function Of The Flow Or 
Line Speed 
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Goals & Targets



The Elephant of Wilson
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1. Small versus large pipe diameter

2. Small versus large particle diameter

3. Low versus high concentration

4. Low versus high line speed

5. Spatial versus delivered concentration

6. Uniform versus graded sands/gravels

1. Carrier liquid properties

2. Solids properties

For sands/gravels in water 64 combinations 
possible
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The Solids Effect

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering



Solids Effect
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Data from Yagi et al., im-vls
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Data looks unorganized depending on the volumetric 
concentration of the solids.
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Data from Yagi et al., Erhg-il
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Data looks more organized  not depending on the 
volumetric concentration of the solids.
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Spatial versus Transport Concentration 
& the Slip Velocity
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Spatial Volumetric Concentration is volume based.
Transport Volumetric Concentration is volume flow 
based.
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The slip velocity here is the velocity difference 
between the line speed and the particle velocity.



Flow Regimes History

Chapter 1
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Regimes History
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The 5 Main Flow Regimes
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The 5 main flow regimes are identified based on their 
dominating behavior regarding energy dissipation.
1. The fixed bed regime is identified based on shear 

stresses at the liquid-fixed bed interface (sheet flow).
2. The sliding bed regime is identified based on sliding 

friction energy losses.
3. The heterogeneous flow regime is identified based on 

potential and kinetic energy losses.
4. The homogeneous flow regime is identified based on 

energy losses in turbulent eddies and viscous friction.
5. The sliding flow regime is identified based on sliding 

friction, potential and kinetic energy losses.
At flow regime transitions, a mix of two flow regimes 
will be present.



The Solids Effect Graph
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How To Read The Graph? (Dp=6 inch) 
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Different Models Fine Sand
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4 possible models: Black heterogeneous, blue pseudo homogeneous, 
light brown pseudo homogeneous & red homogeneous.



Different Models Coarse Sand & Gravel
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5 possible models: Orange SB/He, black He, blue pseudo Ho, light 
brown pseudo Ho & red Ho.



Existing Models

Chapter 6
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Zandi & Govatos, Yagi et al. & Babcock

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

0.01 0.10 1.00 10.00 100.00 1000.00

Φ
=(

i m
-i l

)/(
i l·

C
vt

)(
-)

ψ=vls
2/(g·Dp·Rsd)·√CD (-)

Zandi-Govatos (1967) on Durand coordinates

Zandi-Govatos A
Zandi-Govatos B
Durand & Condolios
Equivalent Liquid Sand
Lower Limit
Limit Deposit Velocity
N=0-40
N=40-310
N=310-1550
N=1550-3100

© S.A.M.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0.01 0.10 1.00 10.00 100.00 1,000.00

(i m
-i l

)/(
C

vt
·i l

)

vls
2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Yagi et al. (1972)

Durand
Equation

Yagi Sand

Yagi Gravel

Yagi Sand
Cvt Data

© S.A.M.

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

0.01 0.10 1.00 10.00 100.00 1,000.00

(i m
-i l

)/(
C

vt
·i l

)

vls
2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Yagi et al. (1972)

Durand
Equation

Yagi Sand

Yagi Gravel

Yagi Gravel
Cvt Data

© S.A.M.

0.1

1.0

10.0

100.0

1 10 100

(i m
-i l

)/(
C

v·i
l)

vls
2·√Cx/(g·Dp·Rsd)

Durand Gradient vs. the Durand Coordinate, Babcock (1970)
30/45 Sand vls=5.750 fps

20/30 Sand vls=11.10 fps
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s=2.76: Limestone

s=1.98: Mine Refuse
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s=2.14: 1"x0.5" Slag

s=2.14: 1"x4 mesh Slag

Durand Equation

Newitt Sliding Bed: 
y=66·√Cx/x, gravel
Babcock Sliding Bed: 
y=60.6·√Cx/x, gravel



22 Models im-vls graph
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For small pipe diameters the models are still “close”. For 
large diameter pipes the difference is much much more. 
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22 Models Erhg-il graph
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This graph organizes the models better, but there is still a 
lot of difference between the models.
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Types of Models
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• There are many empirical models, mainly for 
heterogeneous flow, some for sliding bed and 
homogeneous flow.

• Most empirical models add one term to the Darcy-
Weisbach equation, often based on Froude numbers.

• There is the equivalent liquid model (ELM) for 
homogeneous flow.

• There are some 2 layer and 3 layer models for 
transport with a stationary or sliding bed or sheet flow, 
Wilson, Doron & Barnea, SRC Model, Matousek.

• The 2 layer and 3 layer models are closed with 
empirical equations for the bed shear stress and the 
concentration distribution.



Stationary/Fixed Bed Regime

Chapter 7.3 & 8.3

Wilson et al.

Doron & Barnea

SRC Model

Matousek Model

DHLLDV Framework
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Equilibrium of Forces
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Kazanskij (1980), Cvs=0.17
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© S.A.M. Dp=0.5000 m, d=1.500 mm, Rsd=1.585, Cv=0.170, μsf=0.416



Sliding Bed Regime

Chapter 7.4 & 8.4

Wilson et al.

Doron & Barnea

SRC Model

Matousek Model

DHLLDV Framework
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Equilibrium of Forces
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The Models 1
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• For the wall friction the standard Darcy Weisbach 
friction coefficient is used (Moody diagram).

• The Newitt et al. Model is empirical and based on 
experimental data. Newitt et al. were the first to use the
solids effect graph.

• The Wilson 2LM is based on a bed and water above. 
The bed friction is the Darcy Weisbach friction 
coefficient with the particle diameter as the roughness
multiplied with a factor. Televantos found a factor 2, 
but Wilson also used different factors over the years
like 2.6. For the normal stress between the bed and the
wall Wilson uses a hydrostatic stress distribution, 
resulting in a higher friction force compared to the
submerged weight times the sliding friction coefficient.



The Models 2
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• The Wilson model is based on constant spatial
concentration. Constant delivered concentration curves 
are constructed by interpolation.

• Doron & Barnea (2LM) basically use the Wilson 
model, but extended it with suspension above the bed, 
based on the standard advection diffusion equation. For 
the constant delivered concentration case this always
results in a sliding bed, also at very low line speeds. So
they extended their model to a 3LM giving it the
possibility to have a fixed bed at very low line speeds.

• The SRC model is based on the Wilson model for
constant spatial concentration, but with suspension 
above the bed. The fraction in suspension and the
fraction in the bed are based on an exponential power.



The Models 3
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• This power contains the ratio of the terminal settling
velocity to the line speed. The suspended fraction
forms an adjusted carrier liquid, resulting in adjusted
liquid properties and an adjusted submerged weight of 
the bed. This way there is a smooth transition of fully
stratified flow to heterogeneous flow to homogeneous
flow.

• Matousek uses a completely different method. Based
on the delivered concentration, the Shields parameter is 
determined with the reversed Meyer Peter Muller 
equation. Once the Shields parameter is known, the
bed friction coefficient can be determined from the
equivalent bed roughness. The method is based on 
sheet flow as a transport mechanism.



The Models 4
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• The DHLLDV Framework uses the Wilson approach, 
however with the weight approach for the sliding 
friction. So the sliding friction force equals the
submerged weight times the sliding friction coefficient. 
Above the bed sheet flow is assumed according to
Wilson & Pugh. The method is spatial concentration
based. The delivered concentration follows from the
transport in the sheet flow layer and the transport in the
sliding bed. The method results in a solids effect 
almost equal to the sliding friction coefficient.



The Submerged Weight Approach
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The Limit of Stationary Deposit Velocity
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The Erhg Value is almost μsf
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Resulting Hydraulic Gradient Graph, Cvt
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Wiedenroth (1967), Medium Sand
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Wiedenroth (1967), Coarse Sand
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Heterogeneous Flow Regime

Chapter 7.5 & 8.5

Durand & Condolios

Newitt et al.

Jufin & Lopatin

Fuhrboter – Wilson et al.

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering



Existing Equations Depending on il
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Existing Equations Independent of il
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Energy Dissipation by:
• Turbulence Viscous Dissipation (Darcy Weisbach)
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Verification & Validation, Durand et al.
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Durand & Condolios (1952)
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© S.A.M. Dp=0.1524 m, Rsd=1.585, Cvt=0.050, μsf=0.416



Verification & Validation, Clift et al.
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Clift (1982)
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© S.A.M. Dp=0.4400 m, d=0.680 mm, Rsd=1.585, Cv=0.100, μsf=0.416



Homogeneous Flow Regime

Chapter 7.6 & 8.6

Equivalent Liquid Model

Newitt et al.

Wilson et al.

Talmon

DHLLDV Framework

© S.A.M

Delft University of Technology – Offshore & Dredging Engineering



The Equivalent Liquid Model (ELM)
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Phenomena
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• Very fine particles: The liquid properties have to 
be adjusted. The ELM can be used with the 
adjusted liquid properties.

• Fine particles: The ELM can be used with the 
original liquid properties. At high line speeds the 
lubrication effect will be mobilized. 

• Medium/Coarse particles: The lubrication effect is 
mobilized, due to a particle poor viscous sub-layer. 
This gives a reduction of the solids effect in the 
ELM.



Very Fine Particles
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The Models
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• Newitt et al. use a factor A=0.6 in the ELM.
• Wilson et al. Use different factors for A in the ELM.
• Talmon determined A based on a particle free viscous

sublayer in 2D channel flow.
• The DHLLDV Framework determined A based on a 

concentration distribution in a circular pipe. This way 
the viscous sublayer is particle poor, but not
completely particle free. The result is an equation for
A, depending on the concentration.

• The DHLLDV Framework also assumes that particles
fitting in the viscous sublayer do not result in a 
particle free viscous sublayer and thus have A=1. The 
larger the particles the more the particle free sublayer
is mobilised.



Fine Particles
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Medium/Coarse Particles
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Lubrication Factor αE
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Very Fine Particles
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© S.A.M. Dp=0.1075 m, d=0.040 mm, Rsd=3.999, Cv=0.240, μsf=0.416

Thomas (1976)



Very Fine Particles, with Thomas (1965)

Delft University of Technology – Offshore & Dredging Engineering

© S.A.M

Thomas (1976) Adjusted Liquid Properties
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© S.A.M. Dp=0.1075 m, d=0.040 mm, Rsd=3.999, Cv=0.240, μsf=0.416



Fine Particles
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Whitlock (2004)
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© S.A.M. Dp=0.1016 m, d=0.085 mm, Rsd=1.585, Cv=0.237, μsf=0.416



Medium/Coarse Particles
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Blythe & Czarnotta (1995)
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© S.A.M. Dp=0.1000 m, d=0.280 mm, Rsd=1.585, Cv=0.175, μsf=0.416



Sliding Flow Regime

Chapter 7.7 & 8.8

SRC Model

DHLLDV Framework
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Phenomena
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If the particle diameter to pipe diameter is larger than 
about 0.015, the particles will not be suspended anymore, 
but stay in a fast flowing sort of bed.

The behavior is a mix of the heterogeneous flow regime 
and the sliding bed regime.

At d/Dp=0.015 the behavior is still heterogeneous, but 
the larger the particle diameter the more it is sliding bed 
behavior.

The higher the line speed the smaller the concentration of 
the flowing particles at the bottom of the pipe. 



Verification & Validation, Boothroyde
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© S.A.M. Dp=0.2000 m, d=10.000 mm, Rsd=1.732, Cv=0.100, μsf=0.470

Boothroyde et al.  (1979)



Verification & Validation, Wiedenroth
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Wiedenroth (1967)
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© S.A.M. Dp=0.1250 m, d=5.950 mm, Rsd=1.585, Cv=0.150, μsf=0.416
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Models are valid for the parameters the experiments were 
carried out with.

The correct flow regime has to be identified for each (sub) 
model.

For heterogeneous flow the solids effect is independent of the
Darcy Weisbach component.

Models validated with a wide range of parameters are: Jufin & 
Lopatin, Wilson et al., the SRC model and the DHLLDV 
Framework.

These 4 models give similar results for medium and coarse
sands over a wide range of pipe diameters.
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Questions?


