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EDITOR’S NOTE 
There seems to be a sea change on its way regarding beneficially using dredged sediment, 
especially from navigation channels. The Federal Standard has often been cited as a significant 
barrier to beneficial use in the U.S. It has been interpreted as requiring comparison of only direct 
costs when comparing sediment management options. Section 125 of Water Resources 
Development Act (WRDA) 2020 allows more inclusive considerations of costs and values that 
should be considered as part of the Federal Standard. This expansion could significantly change 
the way sediment management alternatives and potentially increase beneficial use in the U.S. 

 
This issue of WEDA’s Journal of Dredging starts with a paper that highlights water quality 
benefits that can result from dredging nutrient rich sediments from channels and waterways. 
Nutrient-rich sediments are problematic for many waterbodies. The second paper continues our 
focus on beneficial use of dredged sediments. This manuscript describes the results of a particle 
tracing study conducted during the construction of an underwater feeder berm near South Padre 
Island, Texas. 

 
Documenting examples of beneficial use projects in the Journal of Dredging could not be timelier 
whether successful or not. Two additional papers on beneficial use are under review for the next 
issue of the Journal. 

 
Familiar with other beneficial use projects that deserve documentation? The Journal of Dredging 
welcomes manuscripts on beneficial use and all aspects of dredging and dredged material 
management, including those related to cost, environmental compliance, and other important 
issues. If you have questions, please inquire. I gladly help authors determine the best way to 
document their projects. 

 
I am wishing us all of us a prosperous 2021! 

 
Don Hayes 
Editor, WEDA Journal of Dredging 
January 2021 
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ENVIRONMENTAL BENEFITS REALIZED DURING 
NAVIGATION MAINTENANCE DREDGING: A CASE 
STUDY IN THE INDIAN RIVER LAGOON, FLORIDA 

C. K. Maglio1, R. J. Weaver 2, J. H. Trefry2, C. R. Bostater Jr. 2, J.M. Shenker2, K. B. Johnson2, 
S. F. Trulock3, J. D. Ousley4, P. F. Cotter3, P. M. DeMarco3, R. P. Trocine2, A. L. Fox2, and S. L. 
Fox2 

 

ABSTRACT 
 

The potential deleterious effects associated with a dredging operation are the primary focus of 
stakeholders and regulators. The net positive environmental benefits associated with traditional 
navigation maintenance dredging projects are rarely identified and almost never quantified. The 
dredging of a portion of the Intracoastal Waterway in Indian River County, Florida was monitored 
to determine the ultimate fate of the dredged material and its associated nutrient load through the 
dredging and dewatering operations. The quantities and types of materials removed and residual 
bedload was also monitored along with various biological indicators. 
The project removed approximately 211,000 cubic meters (276,000 cubic yards) of material and 
included in this volume was an estimated 240 metric tons (260 short tons) of nitrogen and 130 
metric tons (140 short tons) of phosphorus. Minimal return water was released back into the lagoon, 
so virtually all this dredged material was permanently removed from the aquatic system and placed 
in the upland dredged material management area (DMMA). Thus, this project not only restored the 
required navigational depth but also permanently removed a significant quantity of anthropogenic 
nutrients from the lagoon, benefiting its overall environmental health. 

 
Keywords: Dredging, Indian River Lagoon, dewatering, dredged material disposal, nutrients. 

 
INTRODUCTION 

 
Navigation maintenance dredging took place in the Indian River Lagoon in 2015, an impaired 
waterbody and an important estuary. This lagoon was the focus of international attention due to 
harmful phytoplankton blooms in 2011 and large die-off events of not only seagrasses but also 
marine mammals. As a result of international and local interest, a partnership between the Florida 
Inland Navigation District (FIND), the non-federal sponsor, the U.S. Army Corps of Engineers 
(USACE), and the Florida Institute of Technology (FIT), was formed to monitor the operations 
associated with dredging this portion of the Intracoastal Waterway (IWW), which had not been 

 
 

1 USACE Galveston District, 2000 Fort Point Rd., Galveston, TX 77550. 
2 Florida Institute of Technology (FIT), Ocean Engineering Department of Marine & Environmental Systems, 150 

West University Blvd. Melbourne, FL 32901-6795. 
3 USACE Jacksonville District, 701 San Marco Blvd. Jacksonville, FL 32207. 
4 USACE Headquarters, 441 G St. NW, Washington, DC 20001. 
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maintained since original deepening in 1957. It was a timely opportunity to monitor a relatively 
rare but overall standard maintenance dredging event in an imperiled system. 

 
The USACE and FIT collaborated to evaluate the impacts of this shallow draft maintenance 
navigational dredging project on muck movement, water quality, nutrient removal, and local biota. 
Dredging has historically been viewed as harmful to the surrounding environment in this region, 
primarily due to direct impacts of benthos and secondary impacts primarily associated with 
turbidity plumes. Recently, there has been a move to utilize dredging to help restore the impaired 
ecosystem of the Indian River Lagoon (IRL). Dredging is a significant component of the overall 
restoration plan for the IRL to remove undesirable sediments (Weaver et al, 2015). 

 
Two separate yet concurrent events led to a significant decline in submerged aquatic vegetation in 
the IRL. A 2010 bloom was dominated by a mix of cyanobacteria, diatoms and dinoflagellates in 
the Melbourne area and diatoms and dinoflagellates in the Sebastian and Vero areas. As the first 
bloom continued, a second bloom began in the spring of 2011 and reached immense proportions, 
deserving the label “superbloom.” The 2011 superbloom covered approximately 53,000 hectares 
of open water, including and surpassed all previously documented blooms in intensity (SJWMD, 
2012). By the end of summer 2011, seagrass loss was substantial (Morris et al., 2015). These events 
led to significant die-off of benthos and even marine mammals. Evidence suggests that the loss of 
seagrasses resulted primarily from decreased light penetration during and after the superbloom, 
but other events may have played important roles in creating the observed conditions. The near 
absence of drift algae throughout 2011 and 2012 could have increased the supply of nutrients 
available to phytoplankton because drift algae were not acting as a “sponge” that soaks up 
nutrients. Therefore, the combined loss and absence of both drift macroalgae and seagrass may 
have freed up nutrients to initiate and sustain the superbloom (Morris et al., 2015). 

 
There are deposits of fine-grained silts and clay sediments mixed with up to a quarter of organic 
matter that store anthropogenic chemicals and nutrients. These deposits exist throughout the IRL 
and are termed “muck”. The IRL was once a sandy bottom estuary, with a modest accumulation 
of organic detritus from shoreline and aquatic vegetation loss. Much of the lagoon bottom is now 
covered in a layer of muck, a highly mobile via resuspension, and fine material that has 
accumulated over decades of excess runoff and sedimentation. Fine particles and organics carried 
in by tributaries, canals, and storm drains accumulate and break down on the bottom, forming a 
thick black ooze. This muck builds up in channels and deep pockets where it has reached depths 
of up to 4.6 meters (m) (15 feet (ft)). The muck smothers and blocks light from benthic grasses 
and organisms and it serves as a legacy load that slowly releases nutrients back into the water 
column (Fox and Trefry, 2018). These muck sediments are potentially significant contributors to 
lowering the overall environmental health of the IRL. 

 
Sources of shoaling sediments and nutrients within the IRL are numerous: natural streams, rivers, 
creeks, drainage canals, stormwater outfalls, overland runoff, groundwater seepage, septic-tank 
leachate, and infrequent wet-weather wastewater discharges (Tetra Tech and Closewaters, 2020). 
The IRL is still continually receiving urban and construction runoff, various marina pollutant 
inputs and, possibly, internal pollutant loading from the IRL’s sediments (Steward et al., 2003; 
Fox and Trefry, 2018). The impacts to the lagoon habitat have become so significant that the State 
of Florida has appropriated millions of dollars to clean up the IRL in Brevard County (Waymer, 
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2015). Projects have been completed and planned to address the continued input loads, improve 
water quality, and remove or contain deleterious materials already within the system. This research 
project was devised to help establish the environmental effects or benefits associated with a 
navigational maintenance dredging project in the IRL and to assist in guiding and determining 
associated impact of ongoing and future restoration dredging efforts in the IRL. 

 
DATA COLLECTION AND RESULTS 

 
The USACE conducted a maintenance dredging project in conjunction with the FIND along the 
Intracoastal Waterway (IWW) in the northern five miles of Indian River County, Florida. This 
portion of the waterway has not been maintenance dredged since its 1957 deepening to its present 
depth of 3.7 m (12 ft) Mean Lower Low Water (MLLW) (Taylor, 1999). The project commenced 
in January and dredging was completed in June 2015 with approximately 211,000 cubic meters 
(m3) (276,000 cubic yards (cy)) of material removed. The research effort monitored four inter- 
related components in relation to the dredging project: dredging operations, muck movement, 
nutrient removal, and biological impacts. 

 
Dredging Operations and Sediment 

 
USACE Jacksonville District pre-dredging surveys were used for volume computations of soft 
sediments in the channel prior to dredging. To perform this analysis, both high (200 kHz) and low 
frequency (28 kHz) data for the IWW Indian River County Reach 1 were compared. The basic 
principle employed for this analysis is that the high frequency survey data refracts off the top layer 
of soft silt, which is present in Indian River Reach 1, while low frequency returns penetrate to the 
bottom of the soft silt layer and reflects off a denser substratum (e.g., Foster et al., 2018). The 
difference in these two frequency returns is the thicknesses of soft silt; i.e., isopach (Figure 1) 
(Weaver et al, 2015). In order to qualitatively confirm the accuracy of the soft silt thicknesses, 
push cores and core borings were collected and analyzed in the project area. The subsurface 
sampling confirmed the presence of soft silt deposits as presented in the isopachs. The bulk of the 
soft silts were located within the channel footprint and side slopes. 

 
Given the isopach volume and channel dimension, the soft silts that could potentially be removed 
within the channel’s dredging footprint were calculated. There are gaps in the low-frequency 
coverage from station 43+00 to station 82+00, thus volume calculations (Table 1) only span station 
0+00 to station 42+00. Push core samples were used to measure an average bulk density of 1.54 
g/cm3 (2,596 lbs/cy) in-situ. Based on the measured bulk density, the associated mass of soft silts 
based on volume was estimated along with the average thickness of soft silts (Table 1) (Weaver et 
al, 2015). 

 
The IWW channel has a congressionally authorized 38.1 m (125 ft) bottom width with a 3.7 m (12 
ft) depth relative to MLLW with 3 horizontal to 1 vertical side slopes. There is an allowable over- 
depth allowance of 0.61 m (2 ft) which results in an allowable maximum pay dredging depth of 
4.3 m (14 ft) MLLW. 
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Figure 1. Isopach of high versus low frequency return in IR and push core and boring 

locations (Weaver et al, 2015). 
 

Table 1. Pre-dredging volumes and mass of soft silts in the IWW in Indian River (Weaver 
et al, 2015). 

 
 

Pre-dredge Survey 

Soft 
Silt 
(C.Y.) 

Soft 
Silt 
(m3) 

Mass* 
(Short 
Tons) 

 
Mass* 
(Tons) 

Channel bottom at 12 ft depth 15,085 11,534 19,579 17,762 
Channel bottom at 14 ft depth 31,255 23,896 40,564 36,799 
Channel and side slopes at 12 ft depth 32,096 24,539 41,657 37,790 
Channel and side slopes at 14 ft depth 62,790 48,007 81,494 73,930 
Outside of channel and side slope 34,350 26,262 44,582 40,444 

 Soft 
Silt 
(in.) 

Soft 
Silt 
(cm) 

Avg. thickness 12 ft channel and side slopes 5.3 13.4 
Avg. thickness outside of channel and slopes 3.1 7.9 
*Mass estimate computed by 15 March 2015 push core collection in situ 
measured bulk density of 1.54 g/cm3 conversion of 2,596 lbs/C.Y. Short 
tons equals 2,000 lbs. 

 

The volume of soft silt within the 3.6 m (12 ft) deep channel with side slopes is 24,539 m3 (32,096 
cy) with a weight of 37,790 metric tons (41,657 short tons). The volume of soft silt was also 
calculated within the 38.1 m (125 ft) bottom width without including side slopes (box cut) of 
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11,534 m3 (15,085 cy) with a weight of 17,762 metric tons (19,579 short tons). The volume of soft 
silt that would be removed in the 4.3 m (14 ft) deep channel with side slopes is 48,007 m3 (62,790 
cy) with a weight of 73,930 metric tons (81,494 short tons). The volume of soft silt was also 
calculated within the 38.1 m (125 ft) bottom width of the channel at a 4.3 m (14 ft) channel bottom 
without side slopes and was 23,896 m3 (31,255 cy) with a weight of 36,799 metric tons (40,564 
short tons) (Figure 2). 
The volume difference between the 12 ft design channel and the 14 ft design channel can be 
attributed to the fact that the low frequency surveyed surface drops beneath the design surface of 
the 12 ft channel in various locations, this resulting in a smaller volume. The high frequency and 
low frequency survey data spanned a width greater than the design channel’s dredged footprint. 
The average thickness of soft silt outside of the channel limits was 7.9 cm (3.1 in.) while within 
the channel 12 ft template it was 13.4 cm (5.3 in.) (Weaver et al, 2015). 

 
The dredged material was all placed into the Dredged Material Management Area (DMMA) IR-2. 
The DMMA can also be termed an upland placement area (PA) or a confined disposal facility 
(CDF). The site was of sufficient size that percolation and evaporation were adequate to dewater 
the placement area without the need for controlled releases of decanting water. Several days of 
decanting utilizing the weir structures was performed at the beginning of the project to test the 
water control and decanting systems as this was the first operation of the placement area (Figure 
3), but ended up being unnecessary during operation. 

 
Fluid Mud Measurements 

 
Movement of highly turbid unconsolidated bottom material creates a lutocline or near bottom 
nephelometric layers, reducing the penetration of light reaching the lagoon’s bottom. Monitoring 
and measurement systems recently developed for use in shallow marine areas, such as the IRL, 

 
 
 

Figure 2. IWW dredging template; box cut, required depth and allowable over-depth. 
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Figure 3. Dredged Material Management Area IR-2 and water control weirs 14 May 2015. 

Photo credit Cavache Inc. 
 

called passive sondes were utilized to estimate suspended fluxes along and across the channel. 
These sondes are essentially horizontal facing no-flow-through sediment traps that employ the 
principal of inertia to capture suspended sediment fluxes (Weaver et al, 2015). Four locations 
within the IWW channel to be dredged were selected for deployment of the sondes prior to, during, 
and post-dredging. 

 
The variability between the transect cross sectional average horizontal fluid mud fluxes within the 
bottom layer are shown in Figure 4. The results of extrapolation of the results to a cross sectional 
bottom water layer followed by applying a nonparametric Kolmogorov test indicate that the pre, 
during and post sonde fluxes are significantly different from each other (p<0.001) at each transect. 

 
A layer of fluidized sediment was found to be in constant flux along the bottom of the IRL in the 
vicinity of the dredging operations. Though generally low, the fluxes increased during dredging 
and remained elevated post dredging. The increase in total flux post-dredging in three of the four 
transects is typically assumed to be residuals from the excavation operations. Future studies are 
required to determine the length of time that these residuals will remain suspended. Future efforts 
should also focus on determining if soft silt material is migrating into the channel footprint and if 
the IWW channel is functioning as a sediment trap. One recently conducted study did look at this 
potential and found that at Turkey Creek, a tributary of the IRL, the migration of fines is likely 
(Fox and Trefry 2018). 
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Figure 4. Fluxes in metric tons per day (mT day-1) at each transect applied to a 0.5 meter 

bottom cross-sectional area indicates the fluid mud mass flux or movement between the pre 
dredge, during and post dredge conditions was significantly different, showing cross section 

variability with error bars (Weaver et al, 2015). 
 

Slurry, Dewatering, Nutrient Containment and Testing 
 

Water and slurry samples were collected on four occasions (February 19, March 25, April 21 and 
May 6, 2015) at five locations within and around the DMMA (Figure 5). These water samples 
were filtered and analyzed for the following: total suspended solids (TSS), dissolved phosphate, 
dissolved ammonium and nitrate + nitrite plus dissolved organic carbon, dissolved iron and 
manganese, as well as particulate aluminum, silicon, iron, organic carbon, total nitrogen and total 
phosphorus. Data for salinity, temperature, dissolved oxygen and pH also were collected on site 
during each sampling trip (Weaver et al, 2015). 

 
Concentrations of dissolved ammonium and phosphate in the incoming dredged material (at #1, 
Figure 5) were quite variable with ranges of 0.2-11 mg N/L for ammonium and 0.1-4 mg P/L for 
phosphate, most likely in response to changes in the composition and water content of the sediment 
being dredged. By the time water reached the weir (#2), concentrations of ammonium and 
phosphate averaged 0.3 mg N/L and 0.2 mg P/L, respectively; these values are lower than found 
in the wetland at the end of the discharge pipe leaving the DMMA and at the outfall from the 
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Figure 5. Map of DMMA IR-2 showing approximate sampling locations: #1 at the incoming 
pipe from the dredge, #2 at the weir inside the DMMA, #3 at the pipe leaving the DMMA, 

#4 at the outfall to the IRL and #5 in the IRL away from the outfall site (Weaver et al, 
2015). 

wetland (#3 and #4) but 3-4 times greater than in two samples from the open IRL offshore of the 
DMMA (#5). Low values for ammonium and phosphate at the weir suggest uptake of these 
dissolved nutrient elements by plants (primarily Cattails) or algae within the DMMA, thus the 
placement area was acting as natural filter, similar to a wetland. Increased concentrations of 
ammonium and phosphate at the discharge pipe and in the outfall likely represent release of these 
two nutrients from decomposing organic matter in the surrounding wetland because no discharges 
from the DMMA occurred during the sampling events as the placement area naturally infiltrates 
into the surficial aquafer as it is situated on a sand ridge. 

 
Concentrations of TSS carried by the incoming pipe from the dredge averaged 290,000 mg/L (290 
g/L). By the time the sediment-water mixture reached the weir, TSS values decreased by about 
19,000-fold to an average of 15 mg/L (Figure 6). The typical range of TSS values is 2-25 mg/L for 
the overall IRL and 2-13 mg/L in the immediate project area. Therefore, if any discharges from 
DMMA IR-2 via the weir occurred, they would have had TSS values within or slightly higher than 
values for the IRL. 

 
Trends for particulate nitrogen and phosphorus (in mg/L) followed those for TSS with about 200- 
and 1800-fold decreases, respectively, in the masses of particulate nitrogen and phosphorus per 
liter during transit between the incoming pipe from the dredge and at the weir. Smaller decreases 
in values for particulate nitrogen and phosphorus, relative to those for TSS, were observed along 
the length of the DMMA due to increased organic matter (containing carbon, nitrogen, and 
phosphorus) in the much smaller concentrations of TSS at the weir (Figure 6). Concentrations of 
particulate aluminum and iron (in mg/L) decreased by about 365,000- and 400,000-fold, 
respectively, from the incoming dredge pipe to the weir. These extremely large decreases in 
particulate aluminum and iron along the length of the DMMA show the near complete removal of 
the clay-rich and low organic matter dredged material well before the weir (Weaver et al, 2015). 

 
The 211,000 m3 (276,000 cy) of sediment dredged contained approximately 154,000 metric tons 
(169,000 short tons) of dry sediment, 240 metric tons (260 short tons) of nitrogen and 130 metric 
tons (140 short tons) of phosphorus. Greater than 99% of the nitrogen and phosphorus carried into 
the DMMA was bound to sediments and not dissolved (Table 2). This DMMA was a highly 
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Figure 6. Concentrations of total suspended solids (TSS) for samples from the following 
locations in DMMA IR-2: at the incoming pipe from the dredge (#1, Pipein), at the weir 

inside the DMMA (#2, Weir), at the pipe leaving the DMMA (#3, Pipeout), at an outfall to 
the IRL (#4, Outfall) and in the open IRL away from the outfall site (#5, IRL) (Weaver et 

al, 2015). 
 

efficient trap for the volume and rate of sediment and water deposited during the dredging project 
(Weaver et al, 2015). 

 
Biological Assessment 

 
Given future plans to expand dredging efforts to remove muck along much of the IRL this project 
was monitored for changes to seagrasses, fish and macroinvertebrate abundance. The potential 
discharge of turbid water from the IR-2 placement area into the IRL was monitored for secondary 
effects from the nutrients returned and suspended solids associated with the project. The concern 
was that nutrients might trigger algal production (phytoplankton, drift macroalgae, and epiphytic 
algae), similar to the superbloom. Algae, and suspended solids in the discharge water, could impact 
the recovery of the little seagrass remaining in what once was a lush seagrass habitat not too distant 
from the discharge location of the DMMA (Weaver et al, 2015) (Morris et al, 2015). 

 
The relatively sparse nearby seagrass and fish populations were monitored for potential regional 
effects that might be due to the dredging discharge activity itself, or possibly associated with 
undetected seepage or regional effects of the DMMA. The condition and responses of seagrasses 
and fishes were monitored before, during, and after the dredging project. A background site on the 
shoreline immediately north of the placement area, was monitored for a controlled comparison to 
the responses of seagrasses nearest the DMMA’s outfall location, sampling location #4 (Weaver 
et al, 2015). 

290,000 ± 40,000 
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Table 2. Dredged slurry, discharge, background sampling on February 19, March 25, April 
21 and May 6, 2015. 

 

 
Parameter 

Sample Location 
Incoming 

Pipe 
DMMA at 

Weir 
% Removal 
by DMMA 

DMMA 
Discharge 

Outfall area 
in IRL 

Open IRL 
Background 

Sampling 
Locations 2 or 3 4  4 4 2 

Salinity 31 ± 2 26 ± 4 16.1 21 ± 10 19 ± 8 29 ± 1 
Temperature (˚C) - 16-27  15-25 15-24 25-26 

pH 7.8 ± 0.2 7.2 ± 0.3 7.7 7.2 ± 0.2 7.4 ± 0.4 8.0 ± 0.2 

Dissolved Concentrations (mass/volume) 
O2 

(% saturation) 75 26 ± 21 65.3 26 ± 19 34 ± 45 107 ± 61 

Ammonium 
(mg N/L) 

4 ± 6 
(0.2-11) 

0.3 
(0.06-1) 92.5 0.8 ± 0.7 0.4 

(0.1-1.2) 0.08 ± 0.06 

Nitrate + Nitrite 
(mg N/L) <0.0011 0.008 ± 0.008 -700.0 0.02 

(0.005-0.07) 0.007 ± 0.003 0.004 ± 0.002 

Phosphate 
(mg P/L) 3.9 ± 0.61 0.24 ± 0.16 93.8 0.60 ± 0.37 0.39 ± 0.30 0.05 ± 0.03 

DOC2 (mg/L) 27 ± 81 25 ± 5 7.4 23 ± 6 20 ± 10 7.7 ± 0.8 
Silica (mg Si/L) 12 ± 21 4.1 ± 2.3 65.8 4.9 ± 1.8 3.8 ± 2.2 0.4 ± 0.1 
Iron (µg Fe/L) 5.3 ± 0.31 <0.2-22 96.2 13-220 1.3-200 1.0 ± 0.6 
Manganese 
(µg Mn/L) 45 ± 11 290 ± 120 -544.4 410 ± 190 1.4-570 11 ± 11 

Particulate Concentrations (mass/volume) 

TSS3 (mg/L) 290,000 ± 
40,0001 

15 ± 16 99.995 9 ± 9 (1-22) 11 ± 3 2.4 ± 0.1 

Particulate Al 
(mg/L) 7,300 ± 5001 0.02 ± 0.02 99.9997 0.02 ± 0.02 0.11 ± 0.06 0.062 ± 0.004 

Particulate Fe 
(mg/L) 3,800 ± 601 0.007 ± 0.008 99.9998 0.019 ± 0.016 0.16 ± 0.10 0.068 ± 0.005 

Particulate Si 
(mg/L) 

72,000 ± 
18,0001 

0.12 ± 0.07 99.9998 0.14 ± 0.08 0.6 (0.2-1.4) 0.35 ± 0.04 

POC4 (mg/L) 4,600 ± 1,9001 5.9 ± 7.5 99.87 3.8 (0.5-10) 2.6 ± 1.4 0.56 ± 0.02 
Particulate N 

(mg/L) 380 ± 301 1.9 ± 2.8 99.50 1.1 ± 1.0 0.8 ± 0.4 0.31 ± 0.04 

Particulate P 
(mg/L) 240 ± 701 0.13 ± 0.13 99.95 0.08 ± 0.07 0.08 ± 0.05 0.009 ± 0.002 

Particulate Concentrations (% dry mass) 

Aluminum (%) 2.9 ± 0.6 0.16 ± 0.10  0.25 ± 0.11 1.2 ± 0.9 
(0.5-2) 2.5 ± 0.1 

Iron (%) 1.7 ± 0.6 0.05 ± 0.01  0.26 ± 0.11 1.7 ± 1.2 2.8 ± 0.3 
Silicon (%) 23 ± 4 1.6 ± 1.3  4.4 (0.6-14) 6 (3-17) 14.2 ± 1.3 
POC3 (%) 1.7 ± 0.7 42 ± 16  39 ± 8 22 ± 7 23 ± 2 

Particulate N (%) 0.16 ± 0.04 11 ± 5  11 ± 4 7 ± 4 12.8 ± 2.2 
Particulate P (%) 0.092 ± 0.028 1.0 ± 0.2  0.85 ± 0.22 0.7 ± 0.5 0.37 ± 0.08 

1Average based on the two most representative samples (March 25 and May 6); 2DOC = Dissolved Organic Carbon; 
3TSS = Total Suspended Solids; 4POC = Particulate Organic Carbon 
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The measures of seagrass abundance showed no statistically significant differences when making 
temporal comparisons. The variability and trends of loss or gain comparing transects near the 
DMMA and dredging activities to control transects at the away sites display seasonal growth 
patterns (Figures 7 and 8). For example, where data are available to show mean percent presence 
of Shoal Grass (Halodule wrightii) near the DMMA site before and after dredging, the 
nonsignificant trends at the control transects are universally in the increasing direction. The lack 
of statistically significant temporal differences suggests no proximal effects of DMMA discharge 
or seepage, nor any effects of nearby dredging. Nonsignificant trends tend toward an increase of 
seagrass following dredging, but this is also true of the control transects where no dredging was 
occurring. Therefore, any perceived changes in the seagrass H. wrightii cannot be differentiated 
from regular seasonal changes due to environmental factors unassociated with dredging (Weaver 
et al, 2015). This increasing trend likely points to the ongoing natural recovery of seagrasses in the 
IRL. 

 
Sampling for fish and macroinvertebrates occurred in March, May and July 2015 and determined 
that the nearshore region of the Indian River Lagoon near the DMMA supported an abundant and 
diverse array of juvenile fishes that were vulnerable to collection with the 15 m (50 ft) seine net. 
The most abundant taxa showed distinct changes in abundance with season that reflects their 
recruitment periodicity. For example, Pinfish and grunts typically spawn in winter and recruit into 

 

Figure 7. Seagrass H. wrightii near DMMA outfall. 
 
 

Figure 8. Seagrass H. wrightii at control site, immediately north of DMMA. 
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estuarine nurseries in the spring. The increase generally observed in mean size over the seasons 
reflects growth of the juveniles. 

 
A primary goal of this portion of the field sampling was to determine if water released from the 
DMMA impacted the fauna in the nearshore region of the IRL near the discharge site. Since the 
DMMA never filled to capacity, and did not release water into the Lagoon, it was not possible to 
evaluate any discharge effects (Weaver et al, 2015). 

 
CONCLUSIONS 

 
Due to the fact that there were no releases from the DMMA other than a few days during the initial 
dredge operation to test the weir outfall structures, all of the dissolved and particulate nutrients 
pumped into the DMMA were contained within the placement site. Based on the quantity of 
dredged material removed and the approximate dry sediment weight: 154,000 metric tons (169,000 
short tons), the total weight of nutrients removed can be extrapolated from the measured inflow 
samples: 240 metric tons (260 short tons) of total nitrogen, and 130 metric tons (140 short tons) 
total phosphorus. 

 
Focusing on the samples taken from the discharge pipe as slurry entered the placement area and 
inside the DMMA at the weir, a measurement of the nutrient reduction taking place as the water 
migrated through the DMMA can be obtained. A greater than 99.9% reduction in suspended solids, 
99.5% reduction in particulate nitrogen and 99.9% reduction in particulate phosphorus was 
measured at the weir although no releases were taking place, as shown in Table 2. The dissolved 
phosphate was reduced by 93.8%. The concentrations of dissolved nutrients were reduced to the 
background levels as measured in the IRL. The design of the DMMA and the size of the dredging 
operation resulted in all of the dredged material and all of the carrier water being contained in the 
DMMA and slowly percolating. Had there been a need to release, due to the size and configuration 
of the DMMA, it is likely that nearly all of the particulates would remain settled out and the 
dissolved nutrients in the released water would have the same or similar levels as those found in 
the adjacent IRL waters. 

 
From a biological standpoint, with no releases to impact water quality, and the dredging operation 
being efficient with no turbidity plumes noted, there should not be any expected impact on the 
biology at the timescales of this project. As expected, seagrasses in the vicinity of the DMMA 
expressed no significant difference in growth than the seagrass beds selected as the control site to 
the north. The changes in fish populations cannot be attributed to the dredging, rather are most 
likely natural seasonal variations in populations (Weaver et al, 2015). This navigational 
maintenance dredging project achieved the mission of re-establishing the IWW’s congressionally 
authorized design depths, while removing hundreds of tons of deleterious nutrients from the IRL, 
all without creating a measurable impact to adjacent resources. Future research should focus on 
whether more frequent dredging of the IRL navigation channels could lead to improved lagoon 
health. 
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PARTICLE TRACER ANALYSIS FOR SUBMERGED BERM 
PLACEMENT OF DREDGED MATERIAL NEAR SOUTH 

PADRE ISLAND, TEXAS 
Jens Figlus1, Youn-Kyung Song1, Coraggio K. Maglio2, Patrick L. Friend3, Jack Poleykett4, 
Frank L. Engel5, Douglas Schnoeblen5, and Kristina Boburka6 

ABSTRACT 
 

The fate of unconfined dredged sediment placed as a submerged “feeder” berm in the nearshore 
region of South Padre Island (SPI), Texas, was investigated through a particle tracer study over 
the duration of 15 months. Unconfined sediment feeder systems can be a desirable alternative to 
traditional direct beach placement of nourishment material because the feeder systems are less 
intrusive to the beach environment and often less expensive. Placing sediment as close to the active 
beach profile, as practicable, and relying on natural nearshore processes to slowly distribute the 
sediment to the beach can keep a finite resource within the littoral zone. One challenge with this 
indirect approach is predicting the short- and long-term effects on the coastal system and shoreline 
in light of the complex nearshore dynamics involved. This study aims at elucidating sediment 
transport pathways at SPI after tracer release over the feeder berm via assessment of tracer particle 
counts obtained from nine sediment sampling campaigns (950 surface-sediment grab samples) 
between August 2018 and November 2019, covering a grid of 60 seabed and 50 dry beach 
locations. Tracer counts were performed in the laboratory making use of the fluorescent and 
ferrimagnetic properties of the engineered particles to separate them from other sediment material. 
Results indicate that although the highest tracer counts remained near the initial release site of the 
feeder berm during the duration of the study, appreciable amounts of tracer moved throughout the 
study region. Even though fluctuations of tracer migration were observed, the most prominent 
appearance of tracer particles outside the initial placement site occurred south and immediately 
west of it, indicating net alongshore and onshore transport in those directions. Relatively few tracer 
particles were found on the dry beach, indicating appreciable deposition of feeder material there 
may take years rather than months. 

 
Keywords: Beneficial Use Dredge Material (BUDM), sediment tracer, fluorescent, ferrimagnetic, 
Gulf of Mexico 
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INTRODUCTION 
 

Beach-nourishment projects are important components of coastal risk-reduction strategies but can 
be intrusive to coastal ecosystems and beach use. Beach-quality dredged material can be used as 
nourishment material if sediment characteristics closely match the native beach sand. However, 
transporting the dredged material to the beach and distributing it via heavy machinery is expensive. 
Sustainable sediment management practices that are less expensive and less intrusive are desirable 
(e.g., Berkowitz et al. 2019, Brutsché et al. 2019, McFall et al. 2016, and Welch et al. 2016). 

 
At South Padre Island (SPI), Texas, a submerged “feeder” berm located outside the surf zone in 
nearshore waters (Work and Otay 1997) is being evaluated as an alternative means to supply 
sediment to the beach and reduce ongoing coastal erosion. This part of the Gulf of Mexico features 
an average diurnal tide range of 0.38 m (1.25 ft). The City of SPI is a densely developed tourist 
destination at the southern Texas Gulf coast. Since 1988 SPI has undertaken intermittent 
submerged berm nourishment projects as part of a Beneficial Use of Dredged Materials (BUDM) 
scheme (Aidala et al. 1992). Sediment removed by maintenance dredging is regularly placed back 
into the littoral system, and thus available for cross-shore and alongshore sediment transport to the 
beaches. For nearshore placement, maintenance material is placed by a hopper dredge in nearshore 
“feeder” berm sites (Fig. 1). Previous monitoring of material placed at these feeder berms indicated 
movement toward the beach and dispersal with movement primarily from alongshore sediment 
transport (both north and south) but direct tracer verification had not been accomplished prior to 
this study. An emergency dredging contract has been utilized to remove material from the 
Brownsville Santiago Pass. For this project, the dredged material was again placed at the feeder- 
berm sites 2A and 2B closer to the beach, rather than in the available Ocean Dredge Material 
Disposal Site (ODMDS) as shown in Fig. 1. However, considerable uncertainty remains regarding 
the timing and quantity of material being mobilized and transported to the littoral zone and the dry 
beach (Phillips et al. 2017). Although nearshore placement is typically less expensive than beach 
placement, quantitative evidence is needed to understand how the material spreads and to 
determine whether it is eventually delivered to the active surf zone and deposited on the upper 
beach template. 

 
As part of the most recent BUDM placement, a 15-month sediment tracer study was conducted as 
a collaboration between the City of SPI, U.S. Army Corps of Engineers Galveston District 
(USACE SWG), U.S. Geological Survey (USGS), Partrac GeoMarine Inc., and Texas A&M 
University (TAMU). A total of 2,000 kg (4,400 lb) of engineered ferrimagnetic fluorescent tracer 
particles were deployed to map sediment pathways after initial placement on the berm (Fig. 2). 
Prior to the tracer deployment, USACE SWG placed more than 382,000 m3 (500,000 cu.yd) of 
dredged material from nearby Brazos Santiago Pass approximately 1,220 m (4,000 ft) offshore at 
a depth of 9.1 m (30 ft). During the duration of the study, more than 900 surface-sediment grab 
samples from dry beach (at low tide) and offshore grid points in water depths ranging from 
approximately 7.9 m (26 ft) to 11 m (36 ft) were collected at increasing time intervals after initial 
tracer deployment. 

 
In addition to tracer release and grab sample collection (dry beach and offshore) a nearshore 
acoustic Doppler current profiler (ADCP) was deployed to record the local wave and current 
conditions over the course of the study. The focus of this paper is on the results from the laboratory 
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Figure 1. Map of SPI and nearshore berm site (DB: dry beach; SB: seabed).a 
 

Figure 2. Photo of tracer deployment. 2000 kg (4,400 lb) of ferrimagnetic fluorescent tracer 
particles (top left inset) engineered to match the hydraulic characteristics of the dredged 
material were released via a chute on the side of the boat (bottom right inset) over the top 

of the nearshore berm in August 2018 (Inset photograph in the upper left courtesy of 
Partrac GeoMarine Inc.; large photograph and inset photograph in the lower right 

courtesy of the City of South Padre Island). 
 
 

aAll base maps throughout this document were created using ArcGIS® software (ArcMap 10.4.2) by Esri (Esri 2006). 
Base map data were downloaded from the ArcGIS® online data base (Esri, 2012). 

Gulf of 
Mexico 
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tracer analysis. However, these data are also important to verify numerical modeling approaches 
that will be used to gain a better understanding of the local sediment-transport dynamics. 

 
METHODS 

 
On August 15, 2018, 2000 kg (4,400 lb) of dual-signature tracer particles (ferrimagnetic and 
fluorescent) were released as a slurry at the location of the newly created submerged feeder berm 
in approximately 9.1 m (30 ft) of water 1,220 m (4,000 ft ) offshore of SPI (Fig. 2). The method 
applied during this study reflects the method presented by Poleykett et al. (2018) and follows the 
methodological framework for the use of sediment tracers in marine and coastal environments 
detailed by Black et al. (2017). The particles were manufactured by Partrac Ltd. to closely match 
the hydraulic characteristics of the beneficial use dredged material making up the feeder berm (�S0 
= 0.19 mm, sediment density �s = 2,600 kg/m3, Gaussian distribution). Black et al. (2007) 
discussed optimal characteristics of engineered sediment tracers. The resultant tracer was a 
unimodal, well sorted fine sand (σ = 0.044 mm) (Folk 1980). The settling velocities of the tracer 
particles were determined using the Soulsby criterion (Soulsby 1997): wd10, wd50, wd90 = 0.007 
cm/s, 0.014 cm/s, 0.024 cm/s, respectively. The slurry release into the water was accomplished via 
a chute over the side of a slowly moving vessel. The area of tracer deployment spanned 
approximately 500 m by 500 m (1,640 ft by 1,640 ft). 

 
An initial grid of offshore surface-sediment grab sampling locations consisting of 10 alongshore 
points (�� = 300 m or 984 ft) by five cross-shore points (�� = 300 m or 984 ft) was set up. These 
50 seabed (SB) sampling locations were complemented by an additional 10 SB locations near the 
initial tracer placement area. In addition, 50 dry beach (DB) sampling locations were set up along 
the SPI shoreline (�� = 100 m or 328 ft) as indicated in the left panel of Fig. 3. Nine sediment- 
sampling campaigns were completed at increasing time intervals commencing 24 hours after tracer 
deployment (Table 1). Ten pre-deployment DB and SB grab samples, respectively, were collected 

 

Figure 3. Grid layout for surface-sediment grab samples. Left panel: sampling locations for 
sampling campaigns 1 – 6. Right panel: modified sample-location scheme for sampling 

campaigns 7 – 9. 
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Table 1: Sediment Sampling Campaign Overview. 
Campaign Time past initial 

tracer deployment 
# of surface-sediment 

grab samples (DB / SB) 
0 pre-deployment 10 / 10 
1 24 hours 50 / 60 
2 3 days 50 / 60 
3 1 week 50 / 60 
4 2 weeks 50 / 60 
5 1 month 50 / 60 
6 2.5 months 50 / 60 
7 6.5 months 50 / 60 
8 10 months 50 / 60 
9 15 months 50 / NA 

Total # of Samples: 950 
Note: Campaigns 1-8 were conducted by the USGS; Campaign 9 
was conducted by Partrac GeoMarine Inc. and City of SPI. 

 

to establish base-line conditions (campaign 0). Starting with campaign 7, the sampling grid was 
modified slightly in response to measured tracer counts (see right panel of Fig. 3). The line of 10 
farthest offshore grid points was removed and replaced by 10 alongshore points, five north and 
five south of the initial offshore grid, respectively. In addition, the five northernmost DB locations 
were moved to the south and renamed. The last campaign (campaign 9) only included DB samples. 

 
All 950 surface-sediment grab samples were analyzed at the TAMU Coastal Engineering 
Laboratory (CEL) on the Galveston Campus. Each sample consisted of approximately 1.0 kg (2.2 
lb) of sediment from the top 2 – 4 cm (0.79 – 1.58 in) of the bed. Sample weight was determined 
before and after drying. The drying process included 24 hours of air-drying at room temperature, 
followed by 24 hours in a sediment oven at 40° C (105° F), and an additional 24 hours of air- 
drying afterward to remove all moisture content. The weight of water removed through drying 
typically ranged between 10 and 30% of the total wet sample weight. Anytime samples were not 
actively being processed, they were stored in dry, enclosed crates sealed in a double layer of 
sealable plastic bags to prevent contamination and sample mixing. 

 
Once completely dried, each sample was evenly spread out to an approximate grain monolayer on 
a 1 by 2 m (3.3 by 6.6 ft) black PVC tray. Lumped particle accumulations were gently separated 
by using a kneading stick or hand-held rolling pin. The monolayer was then inspected visually 
with a blue light torch (~ 395 nm) in a dark room (Partrac Ltd. 2018) and the number of tracer 
particles was counted manually (Fig. 4). 

 
For samples with large tracer amounts present, the sediment monolayer was divided into six 
rectangles of equal size and counting was done for two of them only. The resulting particle counts 
were then multiplied by three to stay consistent across all samples. Under the blue light torch, the 
fluorescent tracer particles appear bright green and are easily discernible. The bright green 
appearance is due to the inclusion of a chartreuse dye pigment in the tracer manufacturing process. 
However, samples also contained some micro-plastic fibers of 2–5 mm (0.079–0.197 in) length 
exhibiting a blue reflection. Owing to their distinctive shape, the plastic fibers were usually easily 
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Figure 4. Photo of laboratory tracer assessment. Surface grab samples were dried and 
spread out on a flat PVC tray. A 12,000-Gauss cylindrical magnet was used to extract the 

ferrimagnetic fluorescent tracer particles for subsequent counting under blue light 
illumination. 

 

identifiable but to avoid erroneous tracer particle counts, the ferrimagnetic tracer particles were 
extracted from the sample by using a 12,000-Gauss neodymium magnet prior to counting. The 
magnet was cylindrical with a diameter of 25 mm (0.98 in) and a length of 300 mm (11.81 in) and 
was enclosed in a removable plastic sheath. The cylindrical sheath with the magnet was rolled over 
the sediment monolayer surface repeatedly. Ferrimagnetic particles attached themselves to the 
outer surface of the sheath allowing for easy transfer to a separate tray by simply removing the 
magnet from inside the sheath. The resulting residue contained both native dark gray non- 
fluorescent iron-bearing sediment particles and the green fluorescent, ferrimagnetic tracer 
material. Tracer particle counting was then completed manually using the blue light torch. Finally, 
the individual dry pan or plastic bag where the dried sediment sample was emptied out was 
inspected under the blue light torch and any tracer particle detected from the residual dirt was 
added to the final tracer count. Two different researchers repeated the procedure independently 
and all samples were kept in dark, dry storage protected by double-sealed plastic bags for potential 
future analyses. 

 
Wet and dry weight of each sample, along with tracer count results were recorded in table format 
(Figlus and Song 2020) and displayed graphically using geographic information system (GIS) 
software (Fig. 5 and Fig. 6). Previous studies using similar manual counting approaches have 
reported errors of 5 – 10% attributed to counting fluorescent tracer grains by eye (Carrasco et al. 
2013). 
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RESULTS AND DISCUSSION 
 

The results for the tracer particle counts vary based on tracer distribution at the time of sample 
collection. Particle counts range from zero to just below 3,000 for individual samples. The 
assumption is that the tracer particles behave in a similar way as the placed beneficial-use dredged 
sediment because they were designed to have the same hydraulic characteristics. Sediment and 
tracer movement is inherently tied to the complex nearshore dynamics at the site and is influenced 
by currents, water level fluctuations, waves, surf-zone processes, and morphology evolution (Ingle 
2011). Hydrodynamic data are available from a bottom-mounted acoustic Doppler current profiler 
(ADCP) specifically deployed for this study (Engel et al. 2020) and from nearby National Oceanic 
and Atmospheric Administration (NOAA) Center for Operational Oceanographic Products and 
Services (CO-OPS) Station # 8779749 (NOAA 2020), as explained in more detail in the discussion 
that follows. In addition, tracer particle counts merely represent snapshots in time and grab samples 
were only collected near the sediment surface. This means tracer particles observed at a specific 
location at previous time steps can become buried by new sediment with none or varying amounts 
of tracer. 

 
Despite these caveats, the results reveal patterns of tracer movement. Figs. 5 and 6 provide 
graphical representations of measured tracer counts, N, over the study area for all sediment- 
sampling campaigns where tracer counts are represented by circle size and corresponding number 
at each sample point by using GIS visualization techniques (ESRI 2006). Sample wet and dry 
weights, as well as tracer particle counts for all sampling campaigns and all grid points are reported 
by Figlus and Song (2020). Throughout the entire study period, the highest tracer counts were 
found at or near the initial release location (up to nearly 3,000). These findings indicate that it takes 
on the order of years rather than months to fully redistribute sediment placed at the feeder berm 
under the given hydrodynamic conditions. However, a portion of tracer particles moved out of the 
initial placement area within 24 hours (campaign 1) after placement: large numbers (between N = 
15 and N = 189) of tracer particles were detected just offshore and south of their original location 
outside the initial placement area indicating a predominantly southward littoral drift was likely 
during the initial 24 hours. This pattern continued over the next week, manifesting itself in the 
results from campaign 2 where tracer numbers between N = 21 and N = 2,337 were recorded at all 
sampling locations south and immediately offshore of the initial placement area. Several locations 
just north and offshore of the initial placement area also showed elevated numbers of tracer 
particles between N = 3 and N = 36 indicating that dispersion of sediment was not purely 
unidirectional. During this first week, only negligible amounts of tracer migrated onshore and only 
sporadic counts of six or less tracer particles were found in DB samples. 

 
By week 1 (campaign 3) the pattern had slightly changed (see Fig. 5). While a majority of elevated 
tracer counts outside the initial placement area were still located south of it, a fair amount of 
particles per sample had migrated onshore (between N = 6 and N = 156) as well as north (between 
N = 12 and N = 72) showing up in most samples collected at the two most shoreward alongshore 
rows of sampling locations. This means that onshore migration and alongshore transport in both 
directions had occurred. Incidentally, no appreciable tracer amounts were found in the farthest 
shore-parallel offshore row of samples during campaign 3, further highlighting the shift to onshore 
sediment movement during the preceding time step. 
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Figure 5. Tracer count results post release for sampling campaigns 1 – 6. C1 (24 hours), 
C2 (3 days), C3 (1 week), C4 (2 weeks), C5 (1 month), C6 (2.5 months). The number of 

tracer particles, N, is given at each sampling location and visualized by circle size. 
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Campaign 4 (two weeks post-deployment) revealed yet another shift in sediment dynamics. Large 
numbers of tracer particles were collected both south and shoreward (N = 14 to as much as N = 
3,240 per sample) and north and shoreward (N = 18 to as much as N = 320 per sample) of the 
original placement area as well as in the nearshore region between the feeder berm and the beach 
with decreasing concentration toward the shoreline. About half of the DB points also registered 
small amounts (N = 3 to 12) of tracer particles indicating that onshore transport from the feeder 
berm and deposition on the dry beach was occurring, albeit at low volume. After one month 
(campaign 5), the highest concentrations were still apparent in the initial placement area; some 
tracer was found at most SB sampling locations, although at reduced concentrations from those 
observed in campaign 4, a week prior. The only exceptions were some sampling locations on the 
southern edge of the measurement grid, where an increase in numbers from double digits to triple 
digits was observed. This increase went hand-in-hand with a decrease in counts at locations 
between the original placement area and the southern edge of the grid, highlighting the possibility 
for particles to move southward out of the sampling area. 

 
Campaign 6 (2.5 months post deployment) showed appreciable overall count reductions outside 
the initial placement area, to mostly zero offshore and lower two-digit numbers in the area 
shoreward of it. This could indicate that tracer particles had migrated out of the sampling area or 
had been covered by additional sediment as a result of storm activity as discussed below. DB 
samples did not show any appreciable tracer counts. These observations prompted the modification 
of the sampling grid detailed in the methodology section for the remaining campaigns (Fig. 6). 

 
Six and a half months into the field experiment (campaign 7), the measured tracer distribution 
resembled that after 1 week but with an apparent onshore shift of appreciable tracer counts across 
almost all sampling locations. At that point, the majority of tracer particles outside of the initial 
placement area could be found south and onshore of it with numbers ranging from the low tens to 
615 per sample. Only one DB location south of the feeder berm recorded nine tracer particles. 

 
Ten months post initial deployment (campaign 8), the count numbers looked similar but sampling 
locations shore- and southward of the initial tracer release area revealed increased particle counts. 
This indicates that some onshore movement of sediment occurred over the three and a half months 
between campaign 7 and 8. The final campaign after 15 months (campaign 9) only consisted of 
DB samples. Counts ranged from zero to N = 21 tracer particles per sample, with zero counts 
making up over half of the samples. Only one sample with a count over nine particles (N = 21) 
was found. This sample was from the most southward DB location. This pattern in tracer particle 
counts indicates that onshore transport and deposition on the dry beach likely occurred but the 
stretch of beach with the most benefit may not be the one immediately landward of the feeder berm 
depending on the prevailing nearshore dynamics. The tracer results show that placed material 
moved to within 150 m (500 ft) of the beach face, and therefore well within the closure depth. The 
residence time for material this close to the beach face, and its subsequent along-shore or cross- 
shore transport pathways, are not known. It is clear, however, from the present study that material 
moves from the nearshore berm to within the closure depth, and therefore is capable of nourishing 
the beach. 
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Figure 6. Tracer count results post release for sampling campaigns 7 – 9. C7 (6.5 months), 
C8 (10 months), C9 (15 months, DB samples only). The number of tracer particles, N, is 

given at each sampling location and visualized by circle size. 
 

Publicly available environmental data near the project site from the NOAA CO-OPS Station # 
8779749 (NOAA, 2020) are plotted in Fig. A1 in the appendix. These data include predicted and 
measured water level and wind velocity over the 15-month duration of the study. Between 13 
August 2018 and 11 February 2019, a bottom-mounted ADCP measured hydrodynamics at 
26.142417N / 97.157028W (Lat./Lon.) in approximately 10 m of water depth. At its position just 
north of the tracer release site (see Fig. 1), the ADCP recorded current velocity profiles, hourly 
time series of significant wave height, Hs, mean wave period, Tm, peak wave period, Tp, and wave 
angle of approach, δ, from true north (Engel et al. 2020). These data give some insight into local 
hydrodynamic conditions from placement of the ADCP almost to the date of campaign 7 on 27 
February 2019. Fig. 7 shows the measured time series. Sediment-sampling campaign times are 
indicated by solid vertical lines (C0 – C7) and the time of tracer deployment is shown by a dotted 
vertical line in each subpanel. The shore-normal wave angle of approach is 82° from true north 
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(clockwise rotation) and is indicated by the dashed horizontal line in the bottom panel of Fig. 7. 
Waves approaching the shoreline from an angle below 82° generally tend to produce currents and 
littoral transport toward the south, particularly in the surf zone, whereas waves with a direction 
above 82° may induce northward currents and transport. The measured data however show that 
the situation is much more complex. Near-bottom currents (V1 in Fig. 7) and waves may have 
differing, sometimes even opposing directions. The detailed analysis of the hydrodynamic forcing 
conditions and linkages to sediment transport are beyond the scope of this paper but are under 
investigation. Only a brief synopsis is presented here. 

 
Between tracer release and campaign 1, wave heights ranged from 0.7 to 0.9 m (2.3 to 3.0 ft) with 
mean and peak periods around 4 and 6 s, respectively. Wave approach angles during that time as 
well as bottom currents stayed above 82°; therefore, longshore currents toward the north would be 
expected, although this was not manifested in the tracer counts, which indicated a preferred 
southward transport direction from the initial release site for campaign 1. This could be because 
offshore counter-currents compensated for opposing nearshore currents or could hint at other 
complex circulation patterns affecting the movement of sediment material. During the next two 
days until the start of campaign 2, wave heights reduced to around 0.5 m (1.6 ft) but wave direction 
remained above 82° with a trend to more oblique approach. Near-bottom currents were small 
(around 5 cm/s or 0.16 ft/s) moving primarily northward. The tracer counts for campaign 2, 
however, show increased levels at points south of the initial release site. 

 
These observations again indicate the complexity of the nearshore sediment dynamic regime 
indicative of an offshore counter-current moving southwards, compensating for water mass 
moving northwards with the longshore current. 

 
The conditions preceding campaign 3 (1 week) were characterized by increasing wave heights (as 
large as 1 m or 3.3 ft) and periods (as large as Tm = 5 s and Tp = 6.1 s), maintaining wave directions 
above 82°. The increasing energy levels seem to have contributed to the apparent onshore 
movement and general dispersal of some tracer particles throughout the nearshore zone by the time 
campaign 3 was conducted. The general trend of predominant southward transport, however, was 
still apparent. The bottom current directions during this period had actually shifted to 
predominantly southward-directed flow but with some notable reversals at the beginning and end 
of this period. The following week preceding campaign 4 (2 weeks) revealed some changes in the 
measured hydrodynamics that were also manifested in the tracer counts. First, wave heights 
decreased below 0.5 m (1.6 ft). A decrease in both wave periods to around 3 s was observed 
simultaneously. Then, wave heights increased in intervals to about 1 m (3.3 ft), again, accompanied 
by corresponding increases in both wave periods. During this time, wave directions fluctuated 
greatly, at times decreasing well below 82°. The near-bed current changed from predominantly 
southward-directed to northward-directed during this time. This shift in hydrodynamic conditions 
apparently led to tracer particles being transported northward in large numbers to several sample 
stations north of the initial release site. A small number of tracer particles were also recovered at 
some dry beach locations. The continued shift between north- and south-directed currents seemed 
to have the effect of distributing the tracer particles more widely throughout the entire study area. 
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Figure 7. Measured time series of hydrodynamics at the project site (8/13/2018 – 

2/11/2019). Sediment-sampling campaign times are shown by solid vertical lines (C0 – C7) 
in each panel. The tracer release time is indicated by the dotted vertical lines. The top panel 

shows near-bed current magnitude (V1 in m/s) and direction from which current is 
approaching (red dots) for the bottom ADCP bin (0.85 m above the bed), followed by 

hourly significant wave height (Hs) in meters. The next panel shows both mean (Tm) and 
peak (Tp) wave periods in seconds. The bottom panel displays the measured direction from 
which waves are approaching where shore-normal is indicated by the dashed line (82° from 

true north in the clockwise direction). 
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Between campaign 4 (2 weeks) and campaign 5 (1 month), wave heights up to 1.2 m (3.9 ft) and 
periods up to Tm = 5.2 s and Tp = 8.5 s were measured with swings in wave direction from above 
82° to below 82° and back within hours. Measured near-bed current directions toward the latter 
half of that time interval showed primarily southward-directed flow with magnitudes intermittently 
reaching 20 cm/s (0.66 ft/s) at times. While this dynamic could have resulted in further tracer 
dispersal throughout the entire area, it also seemed to have produced some onshore migration of 
the highly concentrated tracer particles at the initial release site over the feeder berm. 

 
The conditions over the one and a half months between campaign 5 and 6 included the largest 
single significant wave height, Hs = 3.5 m (11.5 ft), and peak period, Tp = 14.2 s, measurements 
for the recorded duration. These occurred during a storm on 10 October 2018. Prior to that date, 
significant wave heights had been mostly around or below 1.0 m (3.3 ft) and peak periods had 
fluctuated between 2.3 s and 8.5 s. Before the storm, waves were mostly directed toward the north 
with only few episodes of several days where waves were directed toward the south. The near-bed 
current velocity exhibited elevated values compared to previous time segments with peak 
velocities up to 42 cm/s (1.4 ft/s) at the height of the storm. The near-bed current direction 
fluctuated between northward and southward directions, shifting from southward-directed right 
before the storm to northward-directed with the arrival of the storm. The days and weeks after the 
storm were marked by elevated levels of wave height, wave period, and near-bed current speed 
with various distinct peaks in current up to V1 = 57 cm/s (1.9 ft/s). During this time, near-bed 
current direction was primarily toward the north whereas waves were mostly directed toward the 
south. The last five days before campaign 6 were characterized by calm conditions with wave 
heights, periods, and current levels reduced to minimal values. The tracer counts from campaign 
6 displayed an overall reduction in the amount of tracer particles found at most sampling locations 
outside the initial placement area. Certainly, the storm and subsequent energy peaks had the ability 
to mobilize large amounts of bed material from near the shoreline to well offshore the feeder berm 
and introduce these sediments to the project area. The calm conditions just prior to campaign 6 
then provided ideal conditions for sediment to settle out of the water column, potentially leading 
to surface grab samples being collected outside the initial placement area with reduced tracer 
counts as shown in Figure 5. Only few sampling locations landward of the initial placement area 
show elevated tracer counts hinting at the potential of onshore sediment movement from the feeder 
berm prior to campaign 6. 

 
Available ADCP data end on 11 February 2019, 16 days before campaign 7. The hydrodynamic 
conditions recorded up to that point cover 87% of the four-month duration between campaign 6 
and campaign 7. This time frame was characterized by several high-energy storm events with 
significant wave heights near or exceeding 3 m. Peak wave periods ranged from 2.2 s to 9.8 s 
where the higher Tp values coincided with the larger wave heights. Wave directions fluctuated 
between northward and southward but were primarily directed toward the north over the last three 
weeks of the available measurements. Near-bed currents exhibited their largest recorded speeds 
between campaigns 6 and 7 with a maximum of V1 = 89 cm/s on 23 January 2019, and several other 
peaks reaching current speeds over 60 cm/s. Near-bed current directions fluctuated between 
northward and southward directions with a slight skewness toward the northward-directed flows. 
Tracer counts from campaign 7 revealed a dominant onshore and southward-directed migration of 
tracer particles from the feeder berm (Figure 6) which further highlights the complexities of 
nearshore circulation and the difficulty in linking hydrodynamics recorded at a single point to 
larger-scale sediment transport revealed in this study. Nonetheless, the information collected up to 
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that point helps shed some light on the hydrodynamic processes influencing sediment movement, 
but further detailed analysis is needed to understand the full picture. 

 
CONCLUSIONS 

 
A 15-month long particle tracer study was conducted to map sediment pathways in the nearshore 
region of South Padre Island (SPI), Texas. The objective was to better understand the dynamics 
associated with unconfined placement of beneficial-use dredged material placed in a submerged 
feeder berm. In addition, the viability of such a placement option to supply the SPI beach with 
sediment was assessed. The analysis of collected field samples consisted of counting fluorescent 
ferrimagnetic tracer particles in the laboratory. A total of 950 surface-sediment grab samples from 
nine sampling campaigns plus base-line samples collected from around the feeder-berm area and 
on the dry beach were analyzed. The results showed that the highest concentration of tracer 
particles in all campaigns remained at the location of the initial tracer release. This indicates that 
the time scale may be on the order of years rather than months to fully redistribute sediment placed 
at the feeder berm under the given hydrodynamic conditions. 

 
Outside of the feeder-berm area, tracer counts indicated sediment movement primarily toward the 
south and onshore, but with temporal and spatial variability hinting at the complexity of prevailing 
hydrodynamics in that area. Offshore loss of sediment from the feeder berm was not apparent from 
the tracer results. A small number of tracer particles were observed on the dry beach north and 
south of the feeder berm at times throughout the study period. These results indicate that a portion 
of the placed sediment can move to the dry beach and potentially help mitigate shoreline erosion, 
although the actual tracer particle numbers recorded near the shoreline remained low throughout. 

 
In addition, results of this study indicate that an appreciable amount of material moved onshore 
from the nearshore berm to within the closure depth, and therefore is capable of nourishing the 
beach. Ideally, sediment sampling for tracer content would be conducted for as long as is feasible 
after initial deployment to obtain the longest possible time series of tracer behavior. In practice, 
the length of the sampling period is limited by available project funding and also by the stability 
of the tracer grains under the prevailing hydrodynamic conditions at the site. In summary, the 
results of this tracer and data collection effort support the case that dredged material placed in a 
nearshore berm at this location will eventually be incorporated into the active beach profile as a 
result of background and episodic coastal processes. The results of this study indicate that 
placement of sediment material in a nearshore berm may be a useful, cost effective alternative to 
direct placement of sediment material on the beach when direct placement is not feasible because 
of funding or seasonality constraints. 
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APPENDIX 
 

 
Figure A1. Water level and wind velocity near the study area. The time series of hourly 
data were obtained from National Oceanic and Atmospheric Administration (NOAA) 

Center for Operational Oceanographic Products and Services (CO-OPS) Station # 8779749 
(NOAA 2020). The location of the station is shown in Fig. 1. Sediment- sampling campaigns 
are indicated by red vertical lines. Wind direction indicates the angle from which wind was 
approaching relative to true north in a clockwise rotation. Dominant direction (152°) and 
average wind speed (6.0 m/s or 19.7 ft/s) over the duration of the study are indicated by 

dashed-dotted lines in the middle and bottom panel, respectively. 
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