

Navigating the Water Treatment Design and Permitting Process for Environmental Dredging Projects

Prepared for:

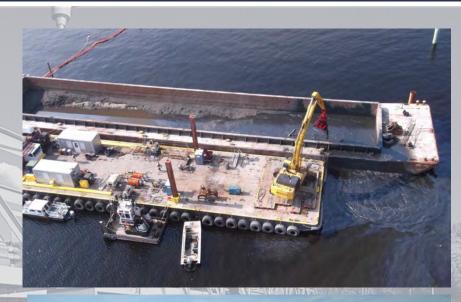


**Educational Commission** 

#### Prepared by:



Peggy Derrick




**Amber Wilson** 

## **Key Topics**

- Water Treatment Basics
- Treatability Testing
- Design Considerations Relative to Water Treatment
- Discharge Permitting
- Uncertainty and Risk: Drivers, Reduction, and Sharing
- Lessons Learned







### Sources of Water Requiring Treatment

- Gravity Dewatering
- Barge Effluent/ Decant Water
- Sediment Processing (geotextile tubes, filter presses)
- Wick Drains
- Stormwater
- Groundwater Intrusion



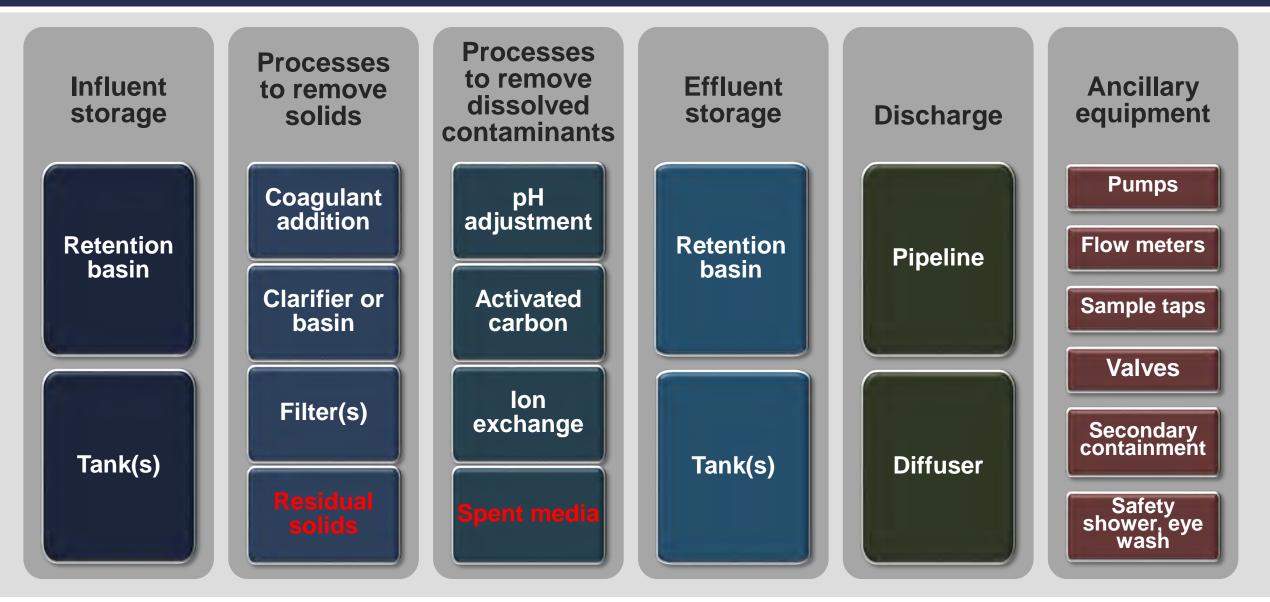








## **Typical Water Treatment Processes for Dredging Projects**


To remove...

organics

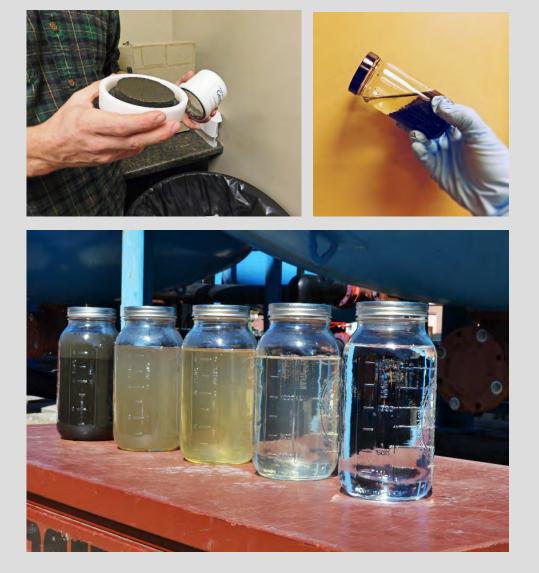
 Clarification (with or without coagulation) Solids Filtration Dissolved inorganics (metals) **Chemical precipitation (pH adjustment) Dissolved** Activated carbon adsorption

Ion exchange

### **Typical Treatment System Components**






## **Examples of Water Treatment Equipment/Processes**





### **Treatability Studies**

- Range from simple or complex, e.g.:
  - Jar testing to select a coagulant, dial in target dosage, for improved clarification
  - Bench-scale testing to estimate treatment efficacy (removal)
  - Pilot testing to evaluate system design
- May be used to refine treatment schemes (less expensive than mobilizing equipment that may not ultimately be needed)
- Chemical additives require regulatory approval prior to use; treatability testing can provide necessary data
- Both sediment and water treatability studies can be performed during predesign





## **Project Design Considerations Relative to Water Treatment**

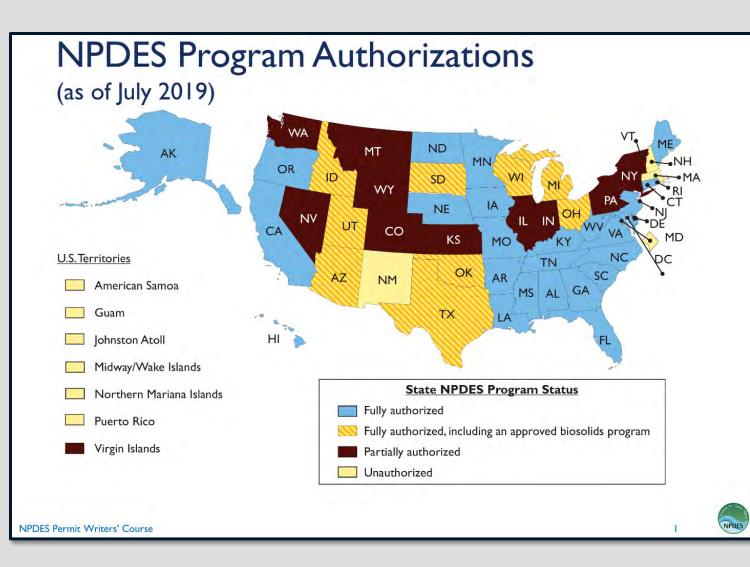
- Contaminants of Concern (COCs)?
- Dredging method and production?
- Site conditions, layout?
- Receiving stream, discharge location?
- Proximity to existing treatment systems?
- Potential storm water contribution?
- Water storage volume?





### Sustainable Practices: Waste and Energy Reduction, Recycling, Re-Use

**RE-USF** 


WASTEENE

- Water treatment infrastructure creates additional end waste materials; minimize end waste from pad construction and secondary containment; find ways to manage and re-use materials onsite or offsite
- Recycling/recirculation of flows Re-use of treated water for chemical make down, backwashing, and performance testing. Re-use of treated water for slurry offload/transport of material mechanically dredged.
- Power Running or tying into an existing line rather than use of generators results in less emissions and on-site fuel storage.
- Site restoration Restore WWTP area to be compatible with post-remediation land use(s).

9

## **Discharge Permitting**

- Discharge permitting regulated under Clean Water Act, Section 402: National Pollutant Discharge Elimination System (NPDES) Program (includes the National Pretreatment Program)
- EPA has delegated the administration of the NPDES program to States (with exception of several states/territories).
- Each state has its own process and requirements.





### **Discharge Permit Types**

• 3 basic discharge options/permit types:

#### Sanitary Sewer / Publicly Owned Treatment Works (POTW)

Surface Water Under General NPDES Permit

Surface Water Under Individual NPDES Permit



## **Comparison of Discharge Permits**

| Discharge Permit<br>Type      | Industrial Pretreatment Program (IPP)                                                                                                                             | General NPDES                                                                                                                                                                              | Individual NPDES                                                                                                                                                                                                                        |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Discharge to                  | POTW (sanitary sewer)                                                                                                                                             | Surface water                                                                                                                                                                              |                                                                                                                                                                                                                                         |  |  |  |
| Permitting<br>Authority       | Sewer owner becomes regulatory<br>authority and determines discharge<br>requirements. EPA or state agency<br>may oversee pretreatment program.                    | State environmental agency, or EPA in MA, NH, NM, District of Columbia, US Territories, Federal and Tribal Lands                                                                           |                                                                                                                                                                                                                                         |  |  |  |
| Effluent Quality<br>Standards | Based on available treatment<br>capacity of downstream treatment;<br>typically, less restrictive than other<br>permit types. Standards for<br>pretreatment apply. | No consideration or provision made<br>for unique project conditions or<br>level of treatment; solids, oil and<br>grease, pH, and sediment COC<br>discharge limits are known in<br>advance. | Dependent upon Water Quality Standards<br>for receiving waters but considers<br>treatment processes and technology;<br>mixing zone allowances; site-specific<br>conditions. <b>Discharge limits can be less</b><br><b>restrictive</b> . |  |  |  |
| Flow Limitation               | Based on sewer and treatment flow<br>capacity; usually per gallon surcharge;<br>typically, <b>most restrictive</b> .                                              | Typically, <b>not restrictive</b>                                                                                                                                                          | <b>Possibly least restrictive</b> – depends on site specific and project-specific conditions                                                                                                                                            |  |  |  |
| Monitoring and<br>Reporting   | Varies, but generally monthly or quarterly.                                                                                                                       | Monthly or Quarterly Discharge<br>Monitoring Reports                                                                                                                                       | Monthly Discharge Monitoring Reports;<br>Operator of Record required to certify                                                                                                                                                         |  |  |  |



## **Comparison of Permit Application Requirements**

| Discharge Permit<br>Type    | Industrial Pretreatment Program<br>(IPP)                                                                                                                         | General NPDES                                                                                                                                                                                | Individual NPDES                                                                                                                                                                                                              |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Discharge to                | POTW (sanitary sewer)                                                                                                                                            | Surface water                                                                                                                                                                                | Surface water                                                                                                                                                                                                                 |  |
| Application<br>Process      | Varies by municipality/sewer<br>owner; typically requires<br>application form. Application<br>form may be quite extensive<br>and may require Public Notice.      | Application forms vary by state; Notice<br>of Intent to the permitting authority –<br>identification of outfall, designated use<br>of receiving water, other information<br>may be required. | Application form(s) vary by state;<br>formal Public Notice and Comment<br>Period required.                                                                                                                                    |  |
| Supporting<br>Documentation | Site layout and pretreatment<br>system process flow diagram;<br>Safety Data Sheets (SDS) for all<br>chemicals in use; anticipated flow<br>volume and variability | COC data; chemicals to be used;<br>anticipated flow volume                                                                                                                                   | More COC analytical data; approval<br>required for additive chemicals to be<br>used; loading and hydraulic<br>calculations; anticipated flow volume;<br>expected exposure concentrations;<br>other supporting data or studies |  |
| Lead Time                   | Typically, shorter than other permit types                                                                                                                       | Relatively short in comparison to<br>Individual NPDES permit; can be<br>as short as 7 days.                                                                                                  | Typically, <b>longest of all permit types</b><br>(6-8 months+); possibly longer for<br>supporting studies (i.e., mixing zone) and<br>response to public comments                                                              |  |
| Fee                         | Fee per gallon and/or per<br>pound of pollutant (i.e., TSS,<br>BOD, etc.)                                                                                        | Permit application fee – some states have annual fees                                                                                                                                        | Permit application fee only                                                                                                                                                                                                   |  |



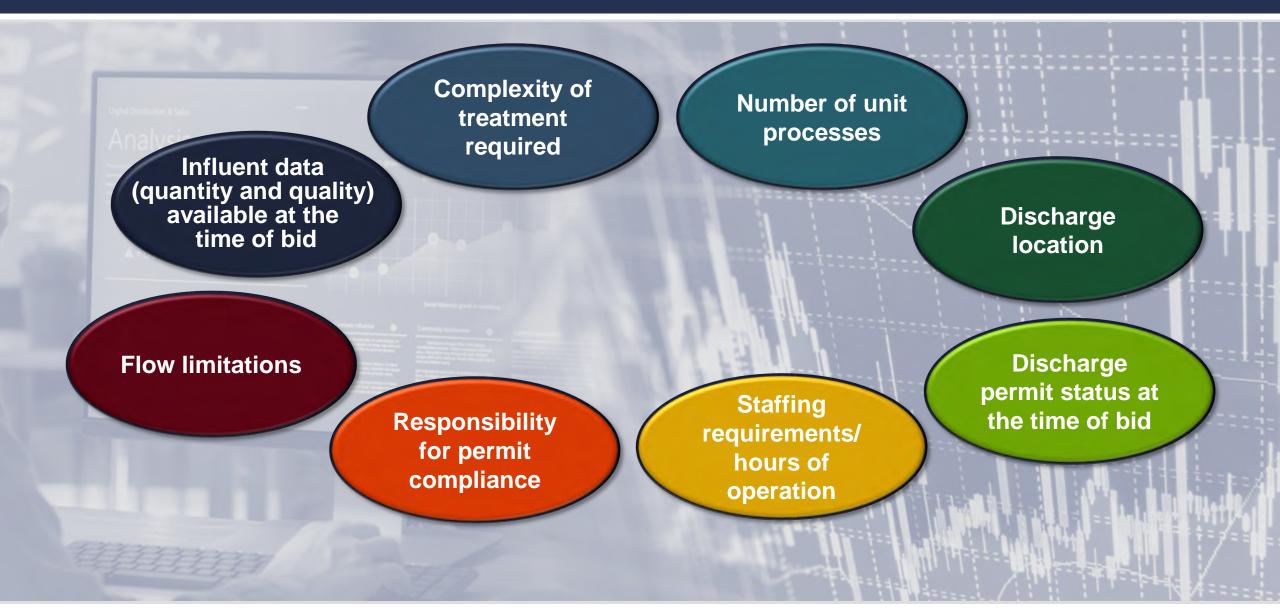
## Which Permit Type/Option is Best for Your Project?

#### **Sanitary Sewer - POTW**

- POTW tie-in in close proximity
- Low flow volume
- No production impact related to flow volume/disruption
- Short-duration project or short lead-time
- Coordinate early with POTW; don't assume that POTW will accept the water - may decline for multiple reasons

#### **General NPDES**

- Most widely-used permit type
- Low or high flow volume
- Effluent limits are pre-established
- Single or several COCs
- Short-duration project or short lead-time
- May be favored by regulatory agencies based on effort required for issuance


#### **Individual NPDES**

- Most complex/complicated application process; significant supporting data requirements; public notice and comments
- Multiple COCs or complex COCs
- High flow volumes
- Effluent limits not known in advance, but can be less restrictive
- Long-duration project with longer lead time
- Significant review and issuance effort for regulatory authority
- Consider project location, timeline, COCs, and expected flow volume
- Coordinate early with regulatory agencies
- Hybrid permit options are possible; phased projects may use more than one permit type





### Water Treatment Cost Drivers





## **Uncertainty and Risk**

#### **Uncertainty = unpredictable; indefinite**

- Time/duration that a WWTP will be required on a project site; many factors influence time
- Concentrations of contaminants in influent
- Changeouts that may be required
- Weather events and dredging operations how they impact volume
- Settling times for solids

### **Risk = chance of injury or loss**

- Time (schedule)
- Money \$\$\$\$
- Other (non-quantifiable, such as public and worker safety or public relations)





### **Risk Drivers and Risk Reduction**

#### **Increased Risk**

- More COCs; more effluent limits
- Presence of emerging contaminants (e.g., PFAS)
- Lack of, or low quality, influent characteristics data
- Discharge permit not in place at time of bid (outfall location, limits unknown)
- More restrictive effluent standards
- Higher flow rate
- Temporary systems = less time for adaptive management
- Less cooperation among project team, lack of trust or communication

#### **Decreased Risk**

- Fewer COCs
- Treatability and/or pilot testing
- Discharge permit in place at time of bid
- Vetting discharge permit options as a project team, to select the option that provides the least restrictive requirements and allows the most cost-effective treatment
- Fewer effluent quality limits
- Less restrictive effluent standards
- Lower flow rate
- Flexibility to change processes or approaches when challenges arise
- Permanent systems = more time for adaptive management
- Strong cooperation, trust and communication among project team



## **Balancing and Sharing Risk**

- Try to find a cost structure that is fair to both owners and operators
- What is the owner's responsibility for time and what is the contractor's/operator's responsibility for time?
- Uncertainties and placement of risk will drive unit costs and fixed price costs
- Owner passes time-related risk to contractor/operator = increased cost to owner, but more overall cost certainty
- Owner pays for media change-outs = decreased risk to contractor/operator
- Use appropriate unit price structure to share risk (i.e., per month rather than per gallon)
- Think through risks thoroughly (flow, influent concentrations, duration, compliance, monitoring, etc.) and assign risk responsibilities in appropriate documentation
- Consider development of joint sampling plan with owner and contractor/operator



### **Lessons Learned: Operations and Treatment**

- Collaboration produces better systems; allow contractors to give input/propose alternates in bid process
- Conduct treatability studies to determine influent characteristics with greater accuracy
- Include contingency for media changeout; consult with product manufacturers to get more accurate estimated media life, select best products
- Account for potential fouling of the system (iron bacteria), excess organics, or other factors that require a significant degree of maintenance
- Be flexible in approaches, to resolve problems
- Examples:

Unexpected media changeouts = down time (added cost)

Unexpected influent contaminants or concentrations = additional media, chemicals and/or treatment units (added cost)







### **Lessons Learned: Permit Requirements**

- Know what your permit says: the whole document, as well as any attachments
- Make a plan to achieve and maintain compliance, with schedules and checklists
- Communicate early and often with regulators about any concerns; work out an approach that suits everyone and prevents non-compliance
- Examples:

**Concentration limit < Loading limit** 

Outfall location designated by permit, even when land-based operations moved

| GENERAL INFORMATION<br>Permit No_<br>Project:<br>Site address: |                 |           |                  | IMPORTANT DATES<br>Discharge authorized<br>Notify regulators: |           |       | Phase / Year |
|----------------------------------------------------------------|-----------------|-----------|------------------|---------------------------------------------------------------|-----------|-------|--------------|
| Certified operator:<br>Map developed:<br>Regulatory contact:   |                 |           |                  | Submit DMRs:<br>Term of coverage ends:                        |           |       |              |
| Permit Requirement                                             | Action Required | Frequency | Responsibilities | First Occurrence                                              | Reference | Notes |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 | 1         |                  | B                                                             |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |
|                                                                |                 |           |                  |                                                               |           |       |              |

Potential non-compliance avoided by upfront communication of concerns with regulators



### Lessons Learned: Bid Packages

- Separate fixed (lump sum) and variable (unit) costs
- Break down unit costs carefully and provide unit rate options (ie, half-day operations, full-day operations, etc.)
- Include assumptions for maximum quantities for unit costs (gallons to be treated, days per month for operations, hours per day for operations)
- Include mobilization and demobilization as separate line items
- Include cost items for chemicals and media change-outs, process control sampling, and compliance monitoring
- Provide discharge permit status (or copy of permit); responsibility for compliance, reporting, sampling, and lab coordination and data management
- Specify need for Operator of Record and Operator qualifications

• Examples:

Few Bid Items or One Lump Bid Item Requested Process Control Sampling and Media Change-Outs Not Included as Bid Items

Mobilization/Demobilization Cost not Requested = Cost Included in Higher Unit Cost for Other Bid Items



### **Lessons Learned: Unexpected Conditions**

- Include modularity and conditions in the design for conditions that are worse than expected
- Add contingency budget for the unexpected
- There is always a chance that something unexpected could occur; prepare contingency plans – what could happen and how would you approach resolution of the problem?
- Examples:

**Colloidal Clays Would not Settle** 

Higher Concentrations of COCs than Expected in the Influent



Effluent Requirements More Stringent than Ambient Background Concentrations



# **Questions?**

Peggy Derrick Vice President EA Engineering, Science, and Technology, Inc., PBC

pderrick@eaest.com

Amber Wilson Marketing Manager Infrastructure Alternatives, Inc.

awilson@iaiwater.com

We would also like to thank the following individuals for their contribution to this presentation: Valerie Rule, Adam Gutta, Paul Stage, Kevin Kowalk, Jamie Beaver, Matt Bowman, Chuck Pace and Steve Shaw

