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Vibracore Measurements

* Length of core tube (L, .) — Headspace = recovered
sediment (L)

* H is depth of penetration (field measured)

* For full penetration, H=1L,_,.and S = Headspace
* Percent Recovery (%R) =L/ H * 100

Headspace

* S measurement is where uncertainty lies in conventional
vibracoring!
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Uncertainty in Conventional Techniques
e Static Method

o Assumes all material loss is from bottom of core upon retrieval

Measurement BML 0 1 2 3 4 5 6 7 g

e Stretch Method

o Assumes uniform recovery throughout drive
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Vibracoring Sediment Acquisition Monitoring (V-SAM)

* Measures incremental depth to mudline inside and
outside of core tube

* Incremental depth of penetration (d,) and incremental
headspace (h,) are recorded at various stages through
the drive, typically in 1’ to 3’ intervals

* At start of drive, h, = L, . with adjustments for location
of fathometer

* Incremental L and H are calculated from obtained
values

FLOYD ISNIDER

location of
inner
fathometer

I

location of
outer
fathometer or
pressure
Sensor




Equipment

GARMIN
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Sample Data Collected with V-SAM

Fathometer Readings TUBE (ft.) Increment Core Cut Plan (ft.)

Depth Acquire Drive Acquire | % Recover Comment In-Situ Core
12.1 20 0.0 0.0 HS 3.2
15 18.9 2.9 1.1 38% 0.0 0.0
18 17 5.9 3.0 63% 1.0 0.4
21 14.1 8.9 5.9 97% 2.0 0.8
24.1 10.7 12.0 9.3 110% 3.0 1.2
27.2 7.5 15.1 12.5 103% 4.0 1.8
30 4.8 17.9 15.2 96% 5.0 2.4
31.1 34 19.0 16.6 127% 6.0 3.1
7.0 4.1

8.0 5.0

9.0 6.0

10.0 7.1

11.0 8.2

12.0 9.3

13.0 10.3

{Process core? (y/n/b/x)* y 14.0 11.4
n Interpolated value 15.0 12.4
* "Accepted"/"Rejected"/"Bulk Sample Only"/"No Core Recovered" 16.0 13.4

17.0 14.3

18.0 15.3
19.0 16.6
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Considerations for the V-SAM System

* Drive increment

e Shallow water

e Soft sediment

* Losses upon retrieval
* Instrument precision
* Percent recovery

* Uncertainty

* Acceptance criteria
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Data Collection using V-SAM

* 3 projects in a riverine environment
* 140 cores collected using V-SAM

* AS is the difference between the final acquisition reading for headspace and
the measured headspace after retrieval

Average

Number of | Average Increment| %R, |Average AS
of Data Collection | Total (+/-)

140 2.2 ft 86% 0.2 ft
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Observed Sediment Trends using V-SAM

Core tube
being pulled
up

Sediment loss from
bottom of tube upon

retreival
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* Losses from Bottom of Core Tube during Retrieval

o Only 4 cores out of the 140 cores collected had losses out the
bottom of the core greater than 6” upon retrieval

o Maximum loss out the bottom was 1.7’

o Average change from the final acquisition reading to the
measured headspace (AS) was 0.2’

o Sediment loss from the bottom of the core was not a significant
trend!



Observed Sediment Trends using V-SAM

Core during
drive

Missed
sediment at
the start of
drive
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* Missing Sediment from the Start of the Drive

o To determine how much sediment was missed in the start of the
drive, %R for the first increment was compared with %R for other
intervals

0 30% of cores had a percent recovery of less than 50% within the
first increment

o Over 40 cores missed at least 1.1 feet in the first increment of the
drive

o Some cores missed up to 5 feet of material from the start of the
drive

o Missed sediment from the start of the drive was much more
significant than sediment lost from the bottom of the core!
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Observed Sediment Trends using V-SAM

* Missing Sediment from the Start of the Drive

%R for Drive Increments Percent of Percent of
<00% Intervals with Intervals with
o . Drive Average | Median | Less Than 50% Greater Than Number of
Increment %R %R Recovery 100% Recovery Samples
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350%

Middle 87% 90% 9% 25%
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Observed Sediment Trends using V-SAM

* Increments with Greater than 100% Recovery

o Can be an indicator of material expansion within core tube
o Over 47% of the final increment in a drive had %R>100

o Likely due to additional vibration at end of drive to try and “break
through” refusal point

Core during
drive

o Can mask earlier intervals of poor recovery when using
conventional methods

Percent of Intervals with
5‘“",'“3’"'_15 Drive Greater Than 100% Number of
daquired Is
;E,ater than Increment Average %R Median %R Recovery Samples
140

drive depth for First 66% 63% 9%

given

et Middle 87% 90% 25% 516
End 118% 100% 47% 140
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Observed Sediment Trends using V-SAM

* Percent Recovery for Different Sediment Types

%R for Sediment Types Number of
00 Sediment Type Average %R Median %R Samples

200% . Sand 92% 92%
0% . Silt 84% 87%
250%

201 !
;

L]
150% —I— I
- * =
50%
N : s

B Gravel (GP/GW) M Sand (SP/SW) M Silty Sand (SM) H Silt (ML)
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Observed Sediment Trends using V-SAM

* Percent Recovery for Different Sediment Types

o0 58% of intervals were classified as primarily silt

o Sediment that was missed during the drive (likely soft silts) would not be accounted for
and would bias the silt percent recovery high

o Small sample size for gravel

o Sands had an average percent recovery 8 to 10% higher than silty sands or silts
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Potential Implications on Cost and Schedule

* The uncertainty associated with estimating in-situ DOC bml can limit the
efficacy of precision remediation dredging, which can affect the cost,
schedule, and overall success of remedial actions

Sample - Assign Elevation - Remedial Design
of Contamination based on EOC

(EOC)
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Potential Implications on Cost and Schedule

* Theoretical Differences in Calculated In-Situ Sample Depth versus Using
V-SAM Technology

o In order to estimate differences in calculated in-situ sample depth bml, an arbitrary
sample depth of 5’ using the V-SAM method was selected

o Actual data were taken and used to calculate equivalent sample depth for each core
using the Static and Stretch methods
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Acquire Drive Acquire | % Recover
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Potential Implications on Cost and Schedule

* Theoretical Differences in Calculated In-Situ Sample Depth versus Using
V-SAM Technology: EXAMPLE

meter Readings TUBE (ft.)  |Increment

20’ core tube
3.2’ headspace

87% recovery / ;::rr:\tslr:mated

Deepest

Calculated in-situ depth (bml)
V-SAM: 5-6’ bml

Static:  2.4-3.1' bml
Stretch: 2.8-3.3’ bml
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Potential Implications on Cost and Schedule

* Theoretical Differences in Calculated In-Situ Sample Depth versus Using
V-SAM Technology

Sample depth in-situ (V-SAM) @ Static Method, calculated ® Stretch Method, calculated

! .o.o\ﬁ.

>

w

Method calculated in-situ sample
depth (feet bml)
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Percent of Cores Percent of Cores

Underestimating Average Distance Overestimating Average Distance
Method of Sample Depth for above V-SAM Sample Depth for Below V-SAM
Calculation V-SAM at 5 ft Method V-SAM at 5 ft Method

Stretch Method 76% 1.3 feet 23% 0.6 feet
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Potential Implications on Cost and Schedule

* Theoretical Differences in Calculated In-Situ Sample Depth versus Using
V-SAM Technology

* Assuming each core represents a 100°’x100’ area for a total area of ~ 32 acres

o Static Method — Could result in needing to re-dredge ~77,000 CY of material, and
~1000 CY of presumed clean material would have been dredged

o Stretch Method — Could result in needing to re-dredge ~51,000 CY, and ~ 7,000 CY of
presumed clean material would be dredged

EOC estimated with Static Method
EOC estimated with Stretch Method
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Potential Implications on Cost and Schedule

* For theoretical 32-acre project, associated costs with overdredging or having
to redredge:

Cost of Overdredging Static

CcY 32,000
111 Ton 184,000

. n Wn

1,000,000 LS S 1,000,000
34 CY S 1,600,000
500,000 LS S 500,000
Subtotal S 3,100,000

Contingency (15%) S 465,000

TOTAL $ 3,800,000

* Could also end up needing to re-characterize and redesign!
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220,000

“n n n

wvurmhrn v n

Stretch
223,000

1,300,000
1,520,000

1,000,000
1,300,000
500,000
2,800,000
420,000
4,700,000
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Potential Implications on Cost and Schedule

* Not to mention additional dredging that wouldn’t have been budgeted for...

MRS | static | _stretch

S 2,000,000 $ 2,000,000

_s 111 Ton $ 14,000,000 $ 9,000,000
e TOTAL $ 16,000,000 $ 11,000,000

* Could be the difference in receiving a “No Further Actions” letter from the
agencies or having to go back and have on-going remediation!
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Thank you

Two Union Square
601 Union Street, Suite 600
Seattle, WA 98101

teal.dreher@floydsnider.com

(206) 292-2078

www.floydsnider.com
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