Treatment of Dredge Return Water by Electrocoagulation Lessons Learned: Effective Solids Management and pH Control Optimization

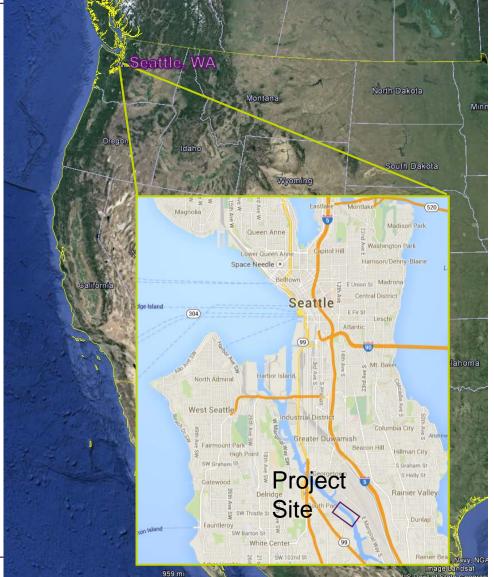
06 November 2015

WEDA Pacific Chapter Annual Fall Meeting

Lindsey Davidge, EIT Trevor Louviere, PE amec foster wheeler

Phillip Luedecke, EIT

Overview


- 1. Site Background & Project Objectives
- 2. 2013-2015 Dredge Return Water Treatment System Goals
- 3. Water Treatment Optimization
 - 1. Improvement of Floc Formation
 - 2. Improvement of Clarifier Effectiveness
 - 3. Optimization of Filtration/Polishing Step
- 4. Conclusion & Project Completion
- 5. Questions & Answers

Project Site Background & Location Duwamish Waterway, Seattle, Washington

- Former aircraft manufacturing facility established in 1936
 - Sediment surrounding parcel was contaminated by heavy metals and polychlorinated biphenyls (PCBs)
 - Building demolition in 2011 allowed for the removal of contaminated sediment
 - Dredging began in 2013
- Project goal: Remove ~160,000 cubic yards of contaminated sediment and restore habitat
 - Dredge water is also contaminated by sediment and must be treated

ameo

foster wheeler

Dredge Schedule & Restrictions

River Access Issues

	Construction Season 1											
	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12	Jan-13	Feb-13	Mar-13	Apr-13	May-13
Fish Window												
Dredging & Backfill												
Tribal Fishing												

	Construction Season 2											
	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13	Jan-14	Feb-14	Mar-14	Apr-14	May-14
Fish Window												
Dredging & Backfill												
Tribal Fishing												

	Construction Season 3											
	Jun-14	Jul-14	Aug-14	Sep-14	Oct-14	Nov-14	Dec-14	Jan-15	Feb-15	Mar-15	Apr-15	May-15
Fish Window												
Dredging & Backfill												
Tribal Fishing												

- Tidal influence restricted access for shallow dredging
- Noise permitting considerations with nearby residential areas

Additional Access Issues

High River Traffic

- Active channel with personal and commercial craft navigating the river
- Nearby construction and dredge operations

Selected Water Quality Discharge Criteria

Dredge water quality

Discharge water criteria

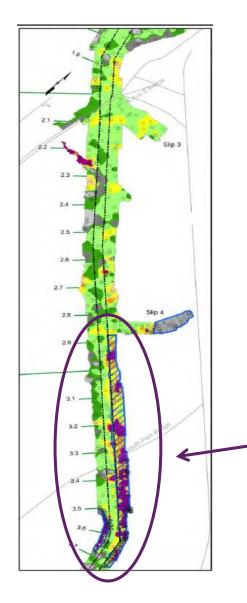
Stormwater criteria

amed

foster wheeler

Constituent of Concern	Approximate Dredge Water Range	Constituent of Concern	Acute	Chronic	WA Industrial Stormwater Benchmarks
Copper (ug/L)	0.478 – 6.25	Copper (ug/L)	4.8	3.1	14
Mercury (ug/L)	1.13 – 4.35	Mercury (ug/L)	1.8	0.025	1.4
PCBs (ug/L)	1 – 6.5	PCBs (ug/L)	10	0.03	Not Applicable
Conventional Parameter	Range	Conventional Parameter	Rar	nge	Conventional Parameter Range
рН	7.5 – 8.5	рН	7 to 8.5, and < 0.5 from background		Between 5 and 9
Turbidity (NTU)	250 - >1000	Turbidity (NTU)	< 5 above background		< 25 NTU

ug/I = micrograms per liter


NTU = Nephelometric Turbidity Unit

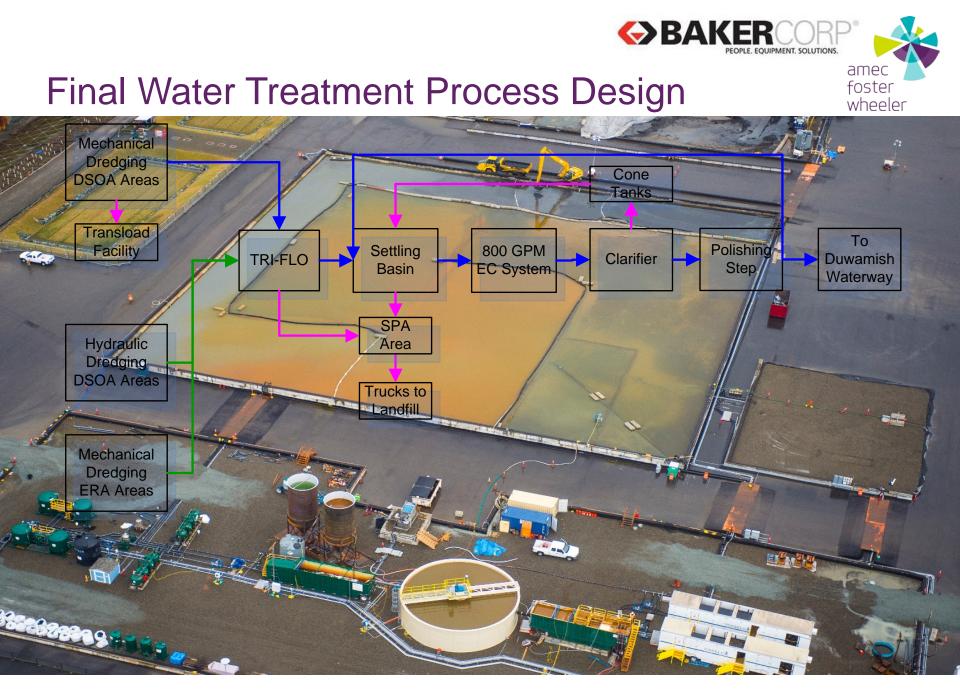
Treatment Considerations for Dredge Water

Water Treatment Design

- Variable dredge water production (0-1,000 gpm)
- Variable water quality
 - (0-15% solids, salinity variation from seawater to rainwater)
- Restrictive dredging timeframe

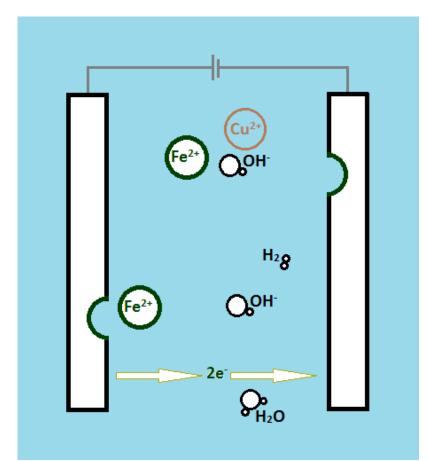
PCB Sediment Contamination

foster


wheeler

Legend

Predicted Total PCB Concentration (ppb)


Project Area

EC Reaction

 $Fe + 2H_2O \longrightarrow$

- Better floc formation at EC trailers
 - Adjust voltage/amperage
 - Supplementation of solids
- Better floc preservation before clarifier
 - Flocculation tank modification
 - Clarifier modifications

Increase Maintenance Intervals

 Treatment optimization upstream reduces solids loading at filtration

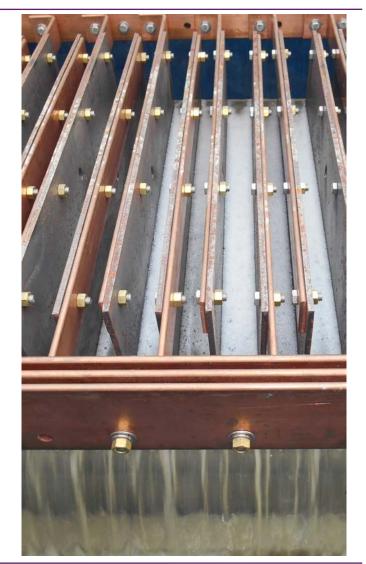
 $\langle \mathbf{O} \mathbf{B} \rangle$

ameo

foster wheeler

CS2 Post-Clarification Turbidity (average): 85

CS3 Post-Clarification Turbidity (average): 25


Electrocoagulation Optimization Fine-tuning the Reactors: Improving Floc Quality

Voltage and Amperage Adjustments

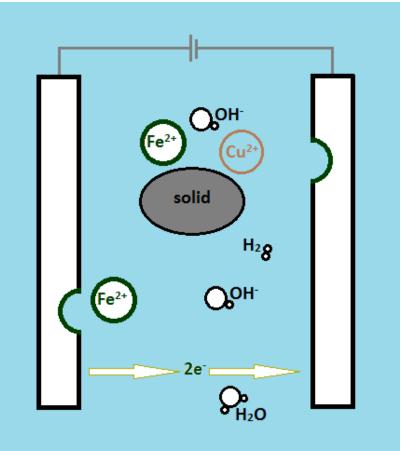
- Voltage limiting system voltage set to defined value and amperage allowed to change
 - Automatic amperage adjustments allowed to change based on influent water conductivity fluctuations
- Power settings changed to adjust iron dose

Reactor Changes

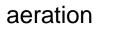
- Patented reactor design
 - Allows for easy removal of reactors for reactor changes to accommodate changing water conditions
 - Multiple reactors used at once
 - In place reactor cleaning

fostei

wheeler

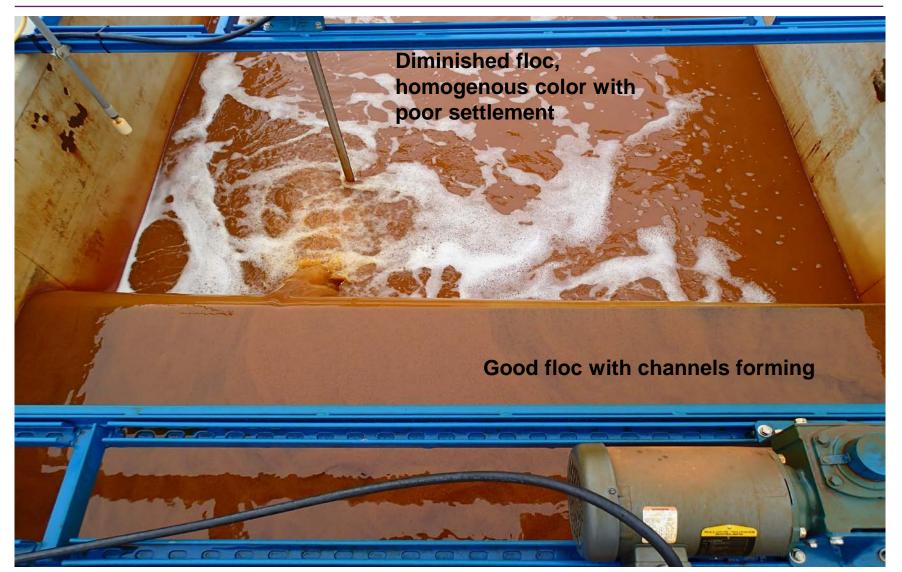

 $\langle \mathbf{O} \mathbf{B} \rangle$

Addition of Solids to Influent Water at the EC Reactors


► Line to maintain 70-100NTU water at the system influent

Post-EC Aeration Optimization Floc Oxidation

- Original design included aeration by motorized mixers
 - Mixing sheared floc particulate
- Diesel-powered compressor installed to aerate through sparge manifolds at 375 CFM
 - Operations were costly and caused maintenance downtime for treatment system
- Compressors were replaced by regenerative blowers and finebubble diffusers
 - Final configuration providing optimal aeration


 $\langle \mathbf{O} \mathbf{B} \rangle$

ame foster

wheeler

Initial CS2 aeration configuration

Floc Transport Improvements Preserve good floc for clarification/settlement

amed

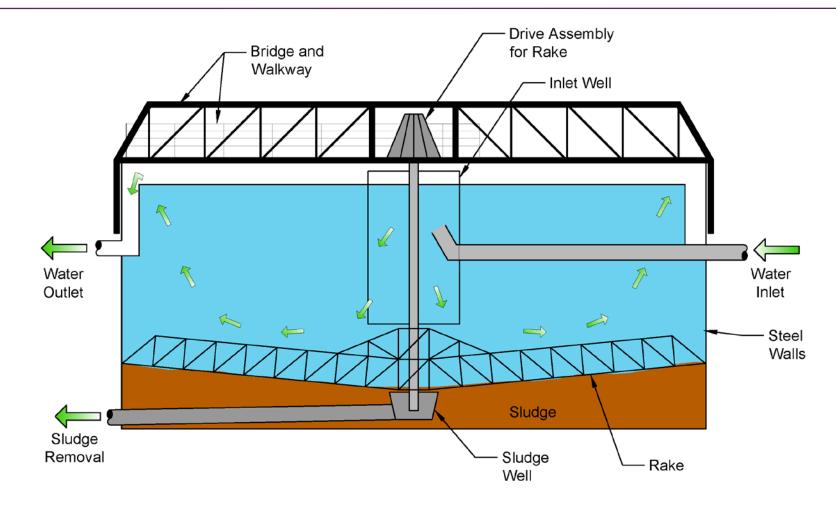
foster wheeler

Floc Transport Improvements Preserve good floc for clarification/settlement

amed

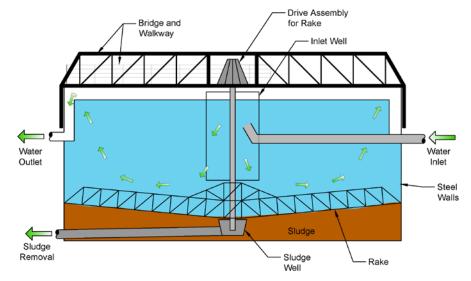
foster wheeler

Flocculation Tank Optimization Supplementation of Solids at the Flocculation Tank


Seeding of the Flocculation Tank

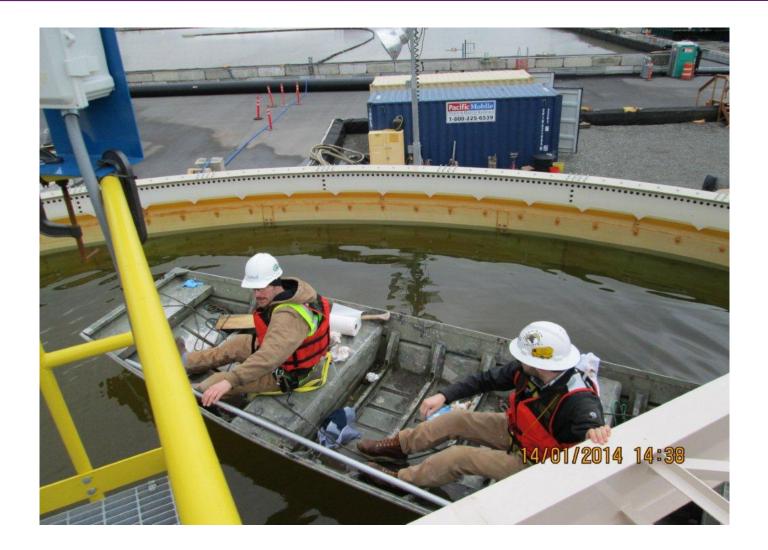
Introduction of settled and semi-compressed floc from the sludge thickening tanks into the flocculation tank

Clarifier Flow Diagram


Improve Clarifier Effectiveness

Management of Settled Solids

- Variable influent water quality and changes in EC settings resulted in highly variable sludge production at the clarifier
 - Consistent monitoring of sludge levels and production rates informed solids removal rates
 - A high sludge bed at the clarifier contributed to floc destruction and poor settlement for incoming particles due to decreased retention time


Addition of a variable frequency drive to the clarifier rake

 Enabled control to optimize clarifier performance

Modification Logistics

Decrease Solids Loading at Filters Cost savings due to reduced consumables

Low Turbidity at the Clarifier Effluent means Less Filtration

- Reduced the solids loading at the sand filters
- Increases the life of the filters
 - Allowed for scheduling of sand filter and GAC filter backwashing
 - Reduced the frequency of bag filter replacement
 - ~\$800/day in CS2 on bag filter maintenance
 - ~\$200/day in CS3 on bag filter maintenance

wheeler

Other Lessons Learned pH Probe Issues

CO₂ Dosing

- EC technology raises the pH of water
- CO₂ dosing used to create carbonic acid to lower the pH
 - Early on, large amounts of CO₂ were used for pH adjustment
 - CO₂ mixing pipe was inadequate for reaction time
 - ► This became a problem for rainwater, which already had a LOW pH
 - Had to use the Kaselco EC units to raise the pH of rainwater before discharging

Turbidity Recirculation at System Effluent

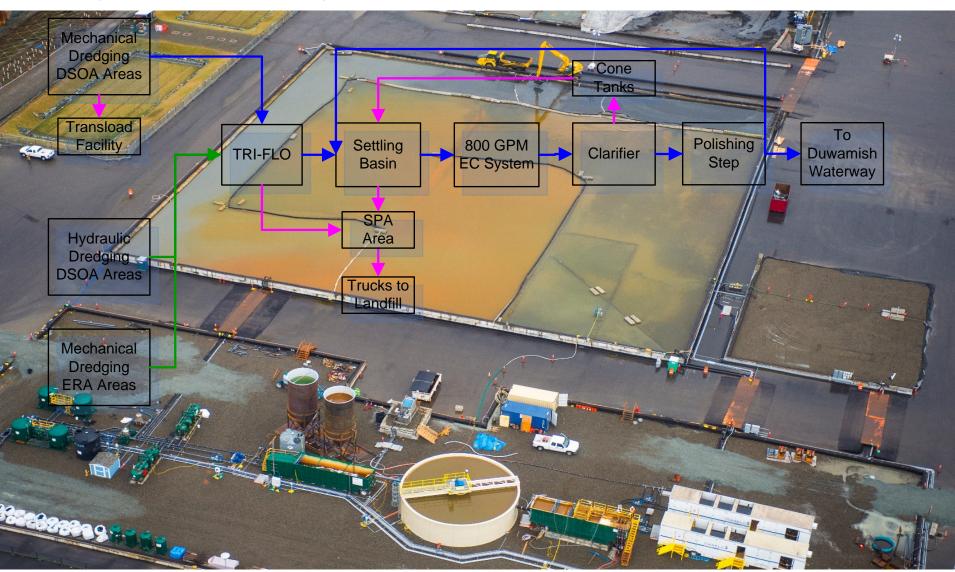
Added controls to recirculate based on high turbidity at system effluent

Redundancy & Spare parts

- Two EC trailers run in parallel
 - Option for maintenance while continuing to treat water with single trailer
- Spare transformers, instruments, pumps, impellers, valves, screens as well as standard parts kept onsite

Tuning a Dynamic System

Summary of Water Treatment Optimization Parameters


Modification/Parameter	Pros	Cons
Reduce EC power settings to reduce iron dose	-Reduce dissolved iron -Minimizing pH rise (eliminated need for CO ₂)	-Reduced floc size
Raise influent turbidity to 70-100 NTU	-Increase floc density	-Increase cleaning frequency at EC influent -Increase solids loading at the clarifier -difficult to maintain consistent solids loading
Use of fine bubble diffusers instead of sparging pipes	-Increase oxidation rate at the flocculation tank -Reduce maintenance	
Stopped mixer operation at the flocculation tank Installed a ramp at the flocculation tank weir Installed a variable frequency drive at the clarifier rake Cut clarifier inlet from 90° elbow to 45° elbow	-Reduced shear forces on the floc and prevented good floc from being broken up before it reached the clarifier	
Add cone tank sludge to head of basin	-Improved solids settlement in the basin	

BAI

EQUIPMENT, SOLUTIONS,

amec foster

wheeler

♦ BAKERCO

amec foster

wheeler

Key Lessons Learned

Importance of optimizing the treatment system

- Proper solids management
- Controlled solids separation
- ▶ pH control

Importance of redundancy

Ability to maintain or replace system components while minimizing downtime

Conclusion

ZERO delayed dredging shifts due to DRWS

Total Solids Removed: 160,000 cubic yards

Total Volume Treated & Discharged: 47,000,000 gal

Met Washington State acute and chronic water quality criteria with ZERO discharge exceedances

Essentially all optimization was done while the system was running!

Season and Duration	Cubic Yards Removed	Gallons of Water Treated & Discharged
CS2 (2 months)	48,500 CY dredged	18 million gallons treated and discharged
CS3 (5 months)	75,000 CY dredged	45 million gallons treated 29 million gallons discharged

Acknowledgements

Hsieh, P., Lesikar, B.J., Webb R., and McCormack, D.C. "Lessons Learned: Electrocoagulation Treatment of Dredge Return Water to Acute and Chronic Water Quality Criteria for Dissolved Metals, Total PCBs, pH and Turbidity," *Proceedings* of the Western Dredging Association and Texas A&M University Center for Dredging Studies' "Dredging Summit and Expo 2015", Houston, Texas, USA, June 22-25, 2015.

Questions & Answers

Lindsey Davidge, EIT Trevor Louviere, PE amec foster wheeler

Phillip Luedecke, EIT

