WEDA 2011 ANNUAL MEETING

STRUCTURAL & HYDRAULIC ANALYSIS OF LOWER COLUMBIA RIVER PILE DIKES (LCR STUDY)

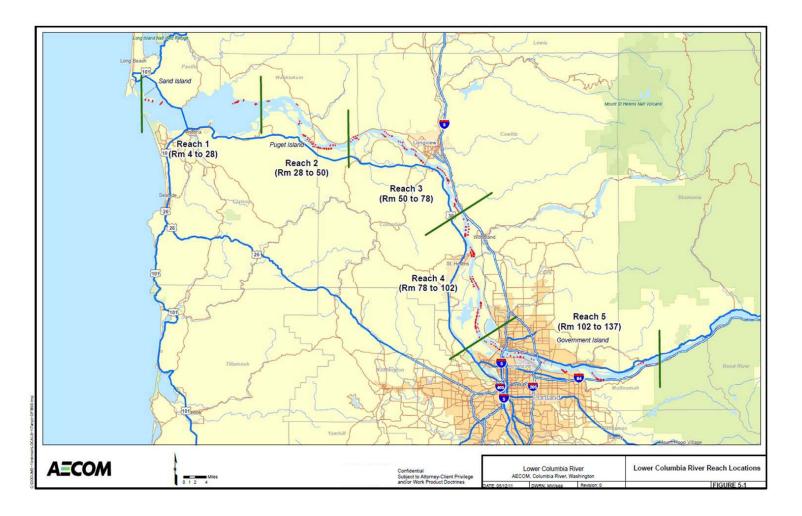
Presented by:

Carl Kassebaum, PE (AECOM) Hans Moritz, PE (USACE – Portland District)

What Are the Presentation

Goals?

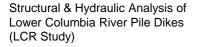
PRESENTATION GOALS


- Introduce and summarize the LCR Study
 - Comprehensive study of the LCR pile dikes (ARRA Funded)
 - Identify study purposes
- Highlight major results and findings
 - Pile dikes are critical component of the LCR navigation system
 - Navigation channel would be unstable without existing pile dikes
 - Pile dikes in substantial disrepair; repairs needed to maintain functions
 - Pile dikes have created and are currently protecting shallow water habitat used by juvenile salmonids
- Highlight potential opportunities
 - Juvenile salmonid habitat mitigation using pile dikes

LCR Study Description

LCR STUDY AREA

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)



REASONS FOR LCR STUDY

- Comprehensive structural and functional condition pile dike assessment addressing
 - Channel stabilization
 - Reducing dredging requirements
 - Bank protection
 - Dredged disposal sites protection
- Federal Columbia River Power System National Marine Fisheries Service Biological Opinion (BiOp) Reasonable and Prudent Alternative (RPA) #38 which states

To increase access to productive habitat and to reduce avian predation, the Action Agencies will develop and implement a piling and pile dike removal program.

TYPES OF PILE DIKES IN THE LCR

Spur Pile Dike

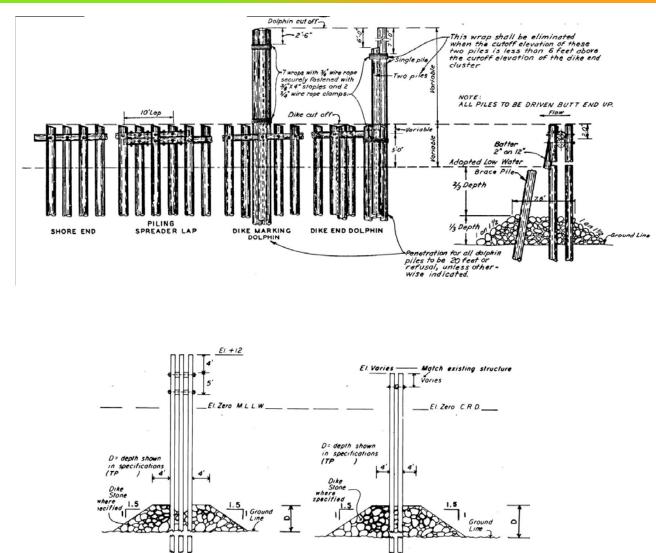
Training Pile Dike

Transverse Pile Dike

Pile Field

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

PILE DIKE DESIGN ELEMENTS


Outer dolphin with stickup

Horizontal Spreader

Vertical Piles

Contecting Hardware (wire rope and bolts) Stone (placed along shoreline and at base of pile dike)

PILE DIKE DESIGN ELEMENTS

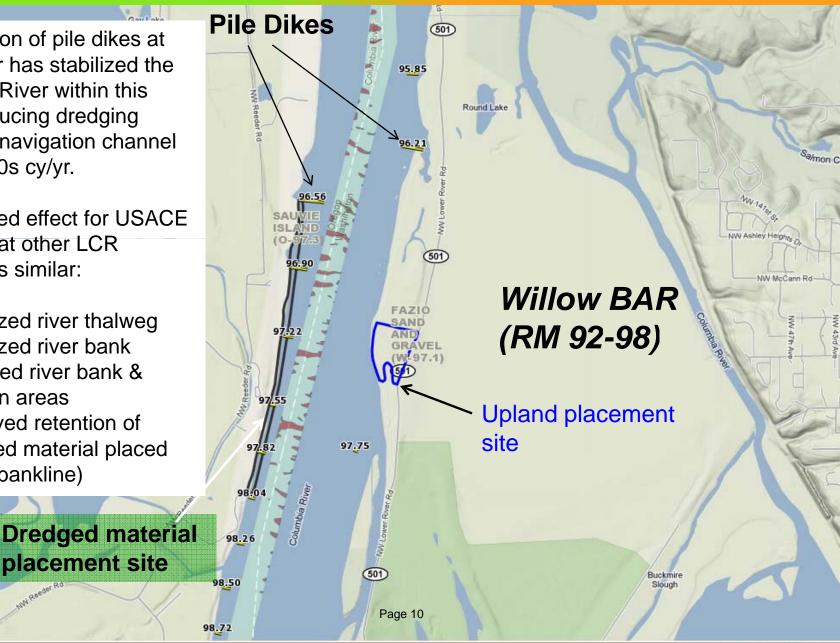
Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

October 28, 2011

TYPICAL SECTION FOR ESTUARY DIKES

Page 9

TYPICAL SECTION FOR UPSTREAM DIKES


PILE DIKE DESIGN ELEMENTS

Construction of pile dikes at Willow Bar has stabilized the Columbia River within this reach, reducing dredging within the navigation channel by 100,000s cy/yr.

The realized effect for USACE pile dikes at other LCR locations is similar:

- Stabilized river thalweg 1)
- Stabilized river bank 2)
- Accreted river bank & 3) riparian areas
- Improved retention of 4) dredged material placed along bankline)

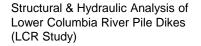
placement site

95.25

SHORT HISTORY AND FUTURE OF LCR PILE DIKES

- Early Implementation and Experimentation (1890's 1930's)
 - Dominant goal was to stabilize the navigation channel and reduce dredging
 - St. Helen's Bar First pile dike installation
 - Period of trial and error
 - River thalweg partially controlled
- Consolidation Period (1930's 1969)
 - All pile dikes constructed (last constructed in 1969)
 - Maintenance program initiated
 - River thalweg stabilized
- Maintain/Operate Period (1970 Present)
 - Pile dikes are aging; most now beyond 50-year design life
 - Numerous pile dikes with advanced degradation
 - ESA listings (13 separate fish species)
- Future LCR Navigation System Management
 - Maintain/upgrade existing pile dikes and navigation channel
 - Reduce dredging
 - Enhance and protect juvenile salmonid habitat

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)



LCR STUDY PILE DIKE INSPECTIONS SEPTEMBER 2010

LCR STUDY - PILE DIKE INSPECTIONS

- Site Inspections (September 2010)
 - 233 pile dikes
- Focus of inspections
 - Structural condition
 - Functional effectiveness
 - Sediment management (reduce river cross-section/reduce dredging)
 - Bank protection
 - Dredged material disposal site protection
 - Redirect flow
 - Habitat
- LCR pile dike condition assessment form

PILE DIKE 61.28 (SEPTEMBER 2010)

Outer Dolphin with Osprey Nest

Vertical Piles showing Minor Rot

Pile Dike 56.64

Horizontal Spreader

For this dike the following structural ratings were given:

No Loose Hardware

Structural

- Outer Dolphin (OD) = Present (+1), Fair Condition (0)
- Pile Braces = Absent (0), Not Present (0)
- Spreader = Present (+1), Good (+1)
- Wood Rot = Minor (+1)
- Hardware = All Intact (+1)
- Overall Damage = < 10% damage (+1);
- Stone blanket = Absent (-1)

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

PILE DIKE 105.04 (SEPTEMBER 2010)

Pile Dike 105.04

For this dike the following structural ratings were given: **Structural**

- Outer Dolphin (OD) = Absent (-1), Not Present (0)
- Pile Braces = Absent (0), Not Present (0)
- Spreader = Absent (-1), Not Present (0)
- Wood Rot = Major (-1)
- Hardware = >30% missing (-1)
- Overall Damage = > 30% damage (-1);
- Stone blanket = Absent (-1)

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

PILE DIKE 105.04 (SEPTEMBER 2010)

Pile Dike 61.28

For this dike the following structural ratings were given:

Structural

- Outer Dolphin (OD) = Present (+1), Fair Condition (0)
- Pile Braces = Present (+1), 50%-90% (0)
- Spreader = Present (+1), Fair Condition (0)
- Wood Rot = Minor (+1)
- Hardware = >30% missing (-1)
- Overall Damage = 10%-30% damage (0); assigned as result of 125 ft hole
- Stone blanket = Present (+1)

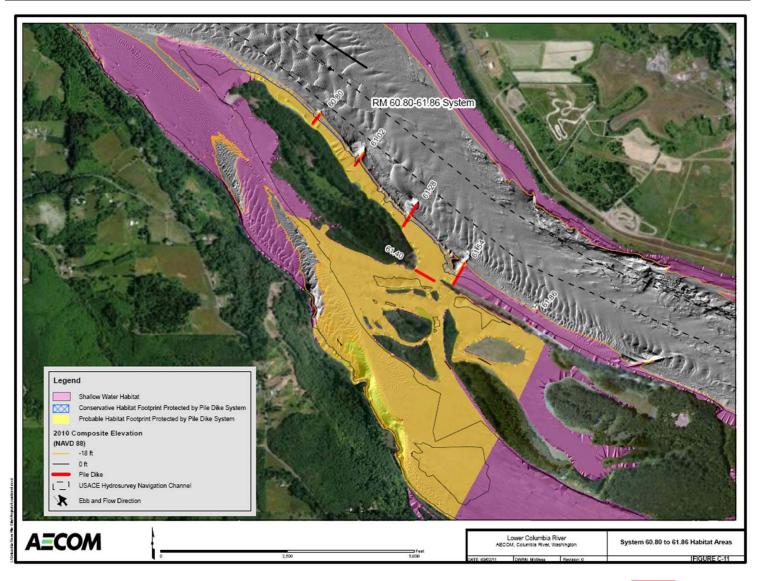
Vertical

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

FINDINGS AND RECOMMENDATIONS

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

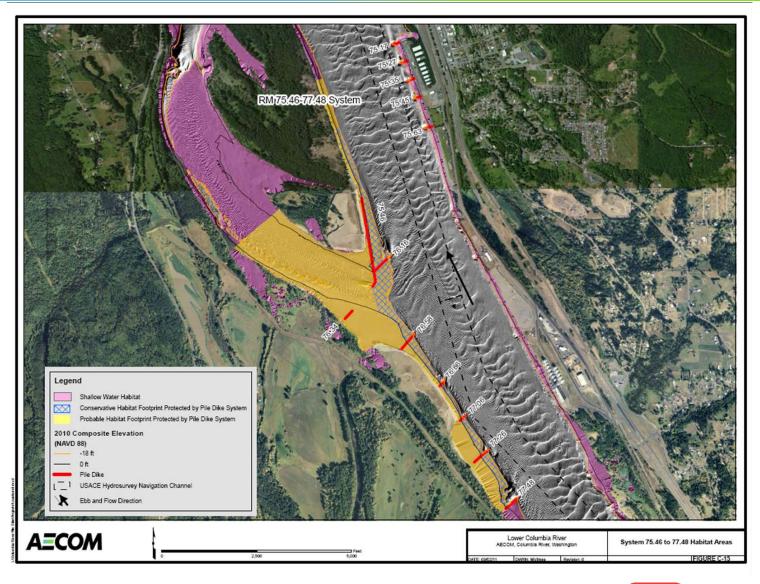
- Pile dikes are vital to the proper continuing functioning of the LCR navigation system
- Majority (>70%) of pile dikes are currently achieving their original intended functions; the thalweg is protected and stable, and associated maintenance dredging has been minimized
- Without the pile dikes
 - Substantial bank erosion would occur
 - The navigation channel location (widths and depths) would become destabilized; the LCR thalweg would become destabilized
 - Cost and amount of dredging would increase substantially and ability to maintain the navigation channel would be jeopardized



FINDINGS (CONTINUED)

- Substantial near-term maintenance is needed
 - Recent deferred maintenance
 - Overall average age of pile dikes > 70 years; substantially greater than original 50-year design standard
- Approximately half of the pile dikes have created and/or are protecting shallow water juvenile salmonid habitat
 - Defined as depths shallower than 18 feet
- 6,100 acres of shallow water habitat currently being protected
- Near-term maintenance required to maintain existing conditions and protect existing shallow water habitat

PROTECTED HABITAT (RM 60.80-61.86 SYSTEM)



Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

PROTECTED HABITAT (RM 75.46-77.48 SYSTEM)

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

AVIAN AND FISH-RELATED PREDATION OF JUVENILE SALMONIDS

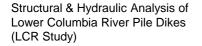
- 2008 BiOp RPA #38 Pile dike removal program to beneficially impact juvenile salmonids
- Optional removal recommendation 39 pile dikes (17%)
- Inconclusive evidence to show positive or negative habitat impact on juvenile salmonids
 - Treated piles Very few, not a contaminant threat
 - Predator fish Activity unobservable, inconclusive impact
 - Avian perching Primarily cormorants observed, inconclusive impact
- Additional scientific research is needed to address pile dike impacts on juvenile salmonids by
 - Impeding access to adjacent habitat
 - Modification of migration patterns
 - Providing perching habitat for avian predators

LCR STUDY RECOMMENDATIONS

- Retain/Repair
 - 169 pile dikes
- Further Study/Analysis
 - 6 pile dikes
- Implement Habitat Improvement Study
 - 101 of the 169 pile dikes receiving retain/repair (dual recommendation)
 - 3 pile dikes (only recommendation)
- Monitor/Optional Removal
 - Monitor (only) 16 pile dikes
 - Optional removal or monitor 39 pile dikes
- Remove (detrimental to function or habitat)
 - No pile dikes identified

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

OPPORTUNITY


Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

HABITAT ENHANCEMENT WITH PILE DIKES

- Pile dikes reduce downstream energy (flow velocities)
- Modify existing (install new pile dikes) in conjunction with potential habitat features such as:
 - Dredged material placement to create shallow water submerged habitat areas (e.g., bench or mound)
 - Large woody debris (LWD)
 - Marsh
 - Wetland mosaic

HABITAT ENHANCEMENT WITH PILE DIKES

Hopper dredge Sugar Island (GLDD) and cutter head dredge Oregon (Port of Portland) working in tandem during Columbia River channel improvement at ~ RM 102.

Sugar Island "feeds" sand/gravel dredged from the navigation channel to the dredge Oregon, where the sand/gravel is re-dredged and placed upland or along acceptable river bank areas.

ΑΞϹΟΜ

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

HABITAT ENHANCEMENT WITH PILE DIKES

Dredge Oregon

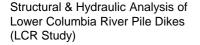
Bank line and upland placement of LCR sand dredged from the navigation channel by "teaming" dredges.

FUTURE: Leverage opportunities for creating additional shallow water habitat.

Develop & apply specific placement methods to achieve "best" terra-forming objectives for desirable habitat <u>using LCR</u> <u>dredged material</u> and existing pile dikes.

Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

SUMMARY


Structural & Hydraulic Analysis of Lower Columbia River Pile Dikes (LCR Study)

SUMMARY

- Pile dikes are a vital component to the LCR navigation system; currently functioning largely as originally intended
- Pile dikes are in substantial disrepair; maintenance is required to maintain existing functions
- Pile dikes are important to juvenile salmonid habitat; greater than 6,100 acres of shallow water habitat currently being protected
- Inconclusive evidence to show positive or negative benefit to juvenile salmonids by removing pile dikes pursuant to RPA#38
- Significant opportunity to create/improve juvenile salmonid habitat with use of pile dikes

