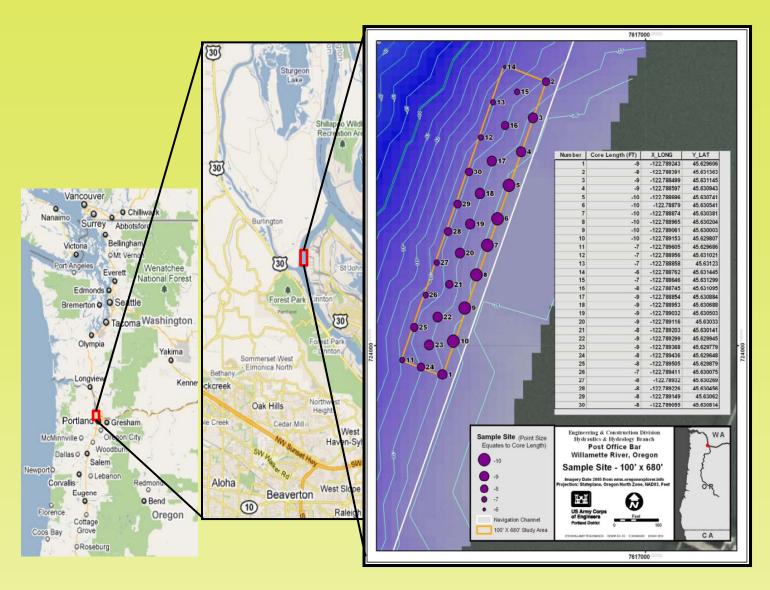
Comparisons of Sediment Sampling Methods for Dredged Material Characterization

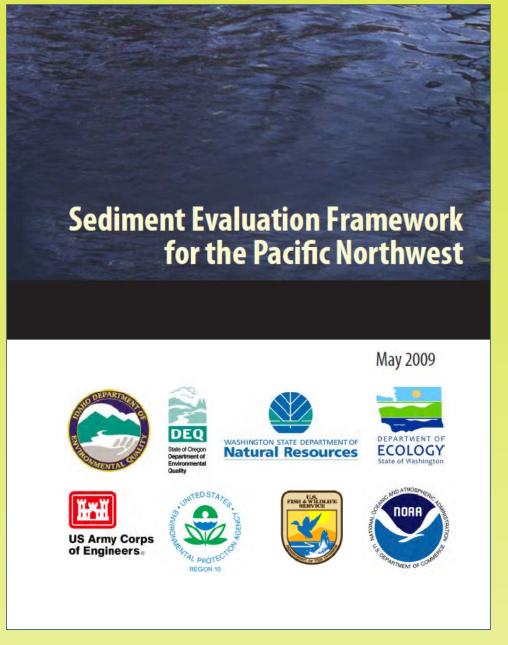
WEDA, Pacific Chapter, Fall Conference, October 26th - 28th, 2011

James McMillan

US Army Corps of Engineers, Portland District



Overview


- Willamette R. federal navigation channel (FNC) is in the Portland Harbor Superfund Study Area, Oregon
- Currently maintained to -40 ft. CRD + 2 ft.
- Post Office Bar (PO Bar) is an 80,000 CY shoal in the Willamette FNC (RM 2.2), last dredged in 1997
- Risk of contamination @ PO Bar, based on historical sources and prior sediment data

Willamette River – Post Office Bar (Study Area)

2009 SEF

In the PNW, dredged material suitability is evaluated under the 2009 Sediment Evaluation Framework

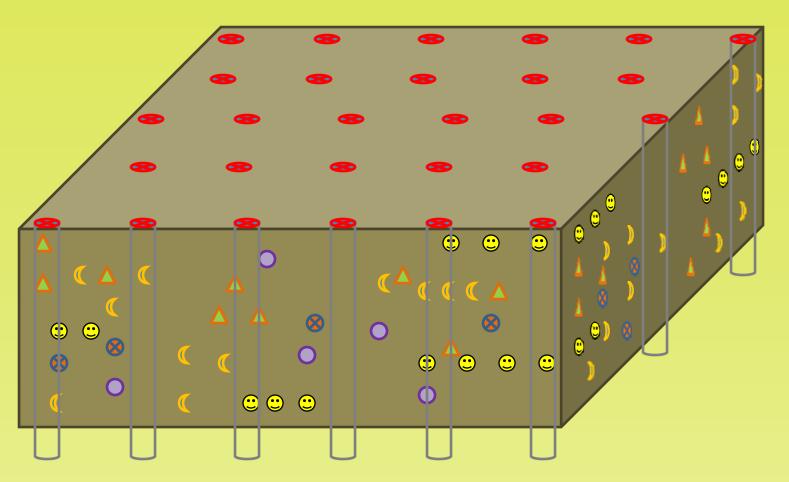
Overview (cont.)

- 2006 SEF FW benthic toxicity sediment quality guidelines (SQGs) used to evaluate dredged material suitability for unconfined, aquatic placement
 - Evaluate: metals, TOC, TPH, SVOCs, PCBs, pesticides, grain size and conventionals
- Regulatory agencies disagree on dredged material sampling intensity

SEF = Sediment Evaluation Framework

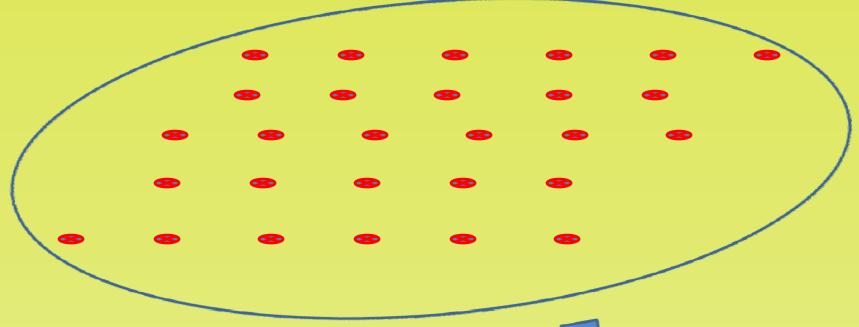
TOC = total organic carbon; TPH = total petroleum hydrocarbons;

SVOCs = semi-volatile organic compounds; PCBs = polychlorinated biphenyls (Aroclors)

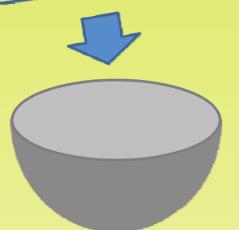

Primary Study Question

Can low intensity sampling (typically used to characterize dredged material) adequately represent mean contaminant concentrations in sediment **and** produce repeatable regulatory decisions, using a regional framework?

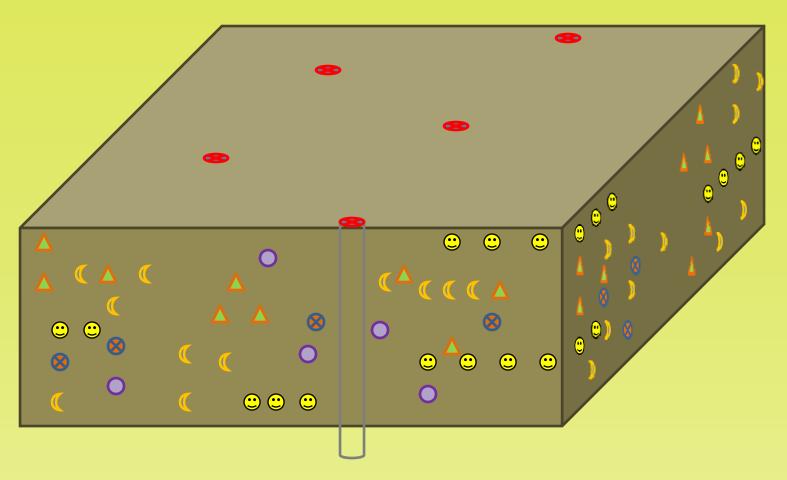
Objectives


- Determine avg concentration of chemicals in the dredge prism (DP) and post-dredge surface (PDS) material using highintensity, incremental sampling (IS)
- Determine how many conventional samples (CS) needed to consistently evaluate <u>suitability</u> of DP and PDS sediment:
 - Mathematical "compositing" of cores
 - Comparison of DP and PDS to SEF SQGs
 - Anti-degradation evaluation is DP >, <, or = to PDS?</p>

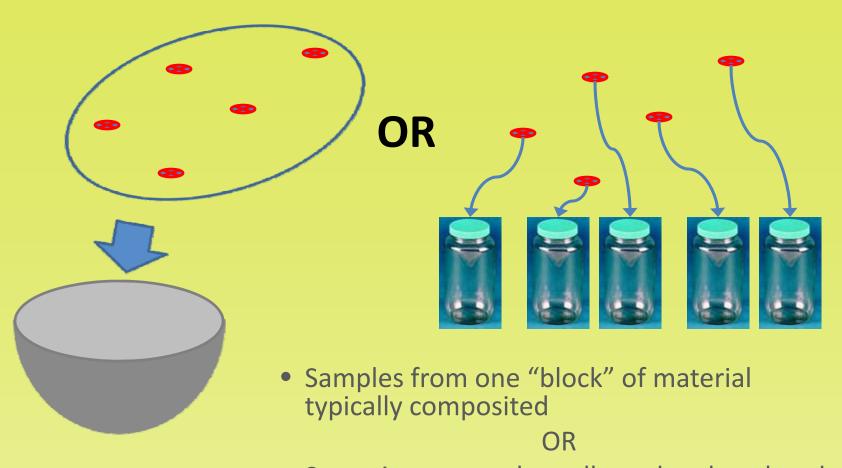
Incremental Sampling (IS)



- High-intensity of cores; low analytical burden
- Not practicable for sediment characterization in routine O&M dredging projects
- Assumes chemicals are heterogeneously distributed in sediments, even in a well mixed system

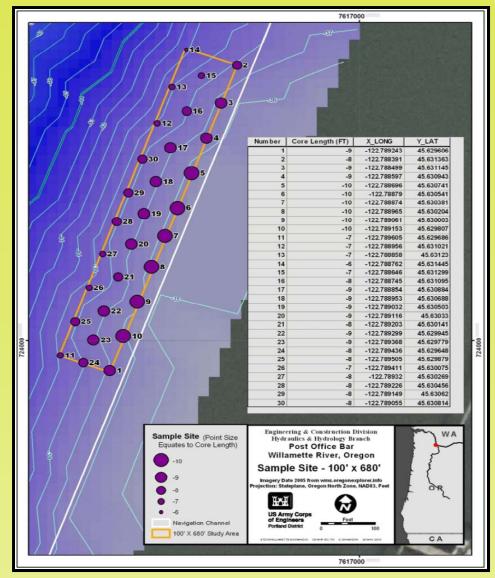

Incremental Sampling (IS)

MANY "Increments" combined from one "block" of sediment to make a single incremental sample

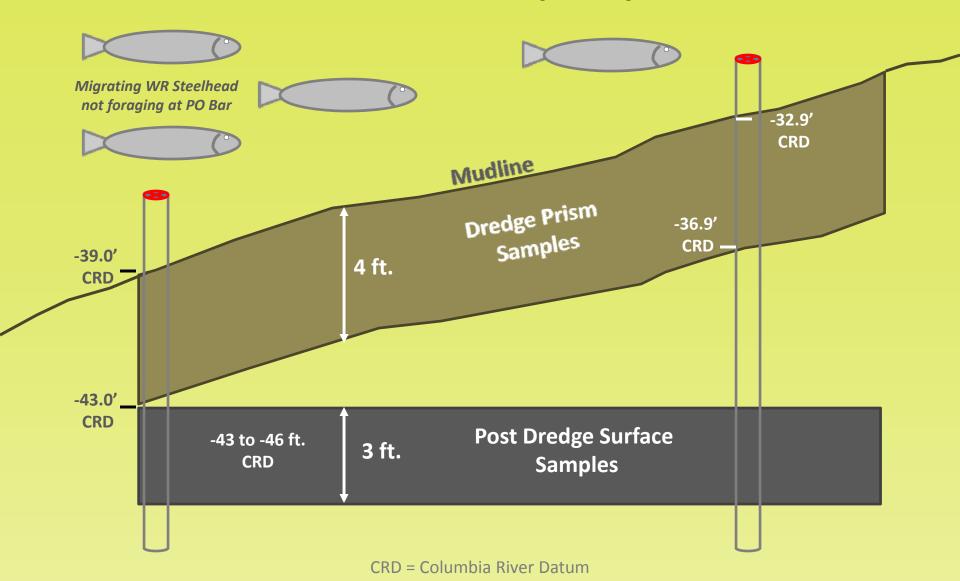


Conventional Sampling (CS)

- Low-intensity of cores; greater potential analytical burden
- Assuming chemicals heterogeneously distributed, possible to miss contaminants OR hit an unrepresentative "hot spot"


Conventional Sampling (CS)

 Sometimes, samples collected and analyzed separately from w/in a "block"


Methods

- 30 vibracore sampling stations within PO Bar dredge area (100 ft x 680 ft)
- Cores logged and processed per SEF protocols:
 - DP material from upper 4 ft. of each core
 - PDS material from -43.0 to-46.0 ft. CRD
- Simulated DP volume approx. 10,000 CY
- DP and PDS samples analyzed for metals, TPH, PCBs, pesticides, grain size, and conventionals (other SEF SVOCs not analyzed)

Planned Vibracore Sample Locations

DP = dredge prism; PDS = post-dredge surface; CRD = Columbia River Datum; SEF = Sediment Evaluation Framework TPH = total petroleum hydrocarbon; PCBs = polychlorinated biphenyls; SVOCs = semi-volatile organic compounds

Using SEF SQGs, compare data from the two sampling methods:

- IS data: represents the "true" estimate of the mean concentrations of chemicals of concern
- CS data: stratified random, repeated use of cores allowed
 - 10 values each for N=1, N=2, N=3, N=5, & N=6
- CS data composited mathematically

N = 1 DP and PDS

Using SEF SQGs, compare data from the two sampling methods:

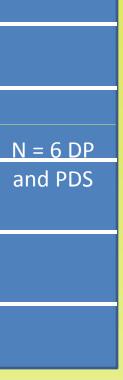
- IS data: represents the "true" estimate of the mean concentrations of chemicals of concern
- CS data: stratified random, repeated use of cores allowed
 - 10 values each for N=1, N=2, N=3, N=5, & N=6
- CS data composited mathematically

N = 2 DP and PDS

Using SEF SQGs, compare data from the two sampling methods:

- IS data: represents the "true" estimate of the mean concentrations of chemicals of concern
- CS data: stratified random, repeated use of cores allowed
 - o 10 values each for N=1, N=2, N=3, N=5, & N=6
- CS data composited mathematically

N = 3 DP and PDS

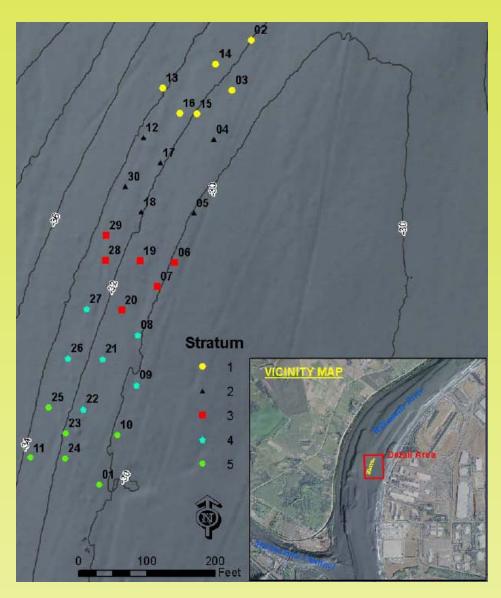

Using SEF SQGs, compare data from the two sampling methods:

- IS data: represents the "true" estimate of the mean concentrations of chemicals of concern
- CS data: stratified random, repeated use of cores allowed
 - o 10 values each for N=1, N=2, N=3, N=5, & N=6
- CS data composited mathematically

N = 5 DP and PDS

Using SEF SQGs, compare data from the two sampling methods:

- IS data: represents the "true" estimate of the mean concentrations of chemicals of concern
- CS data: stratified random, repeated use of cores allowed
 - 10 values each for N=1, N=2, N=3, N=5, & N=6
- CS data composited mathematically

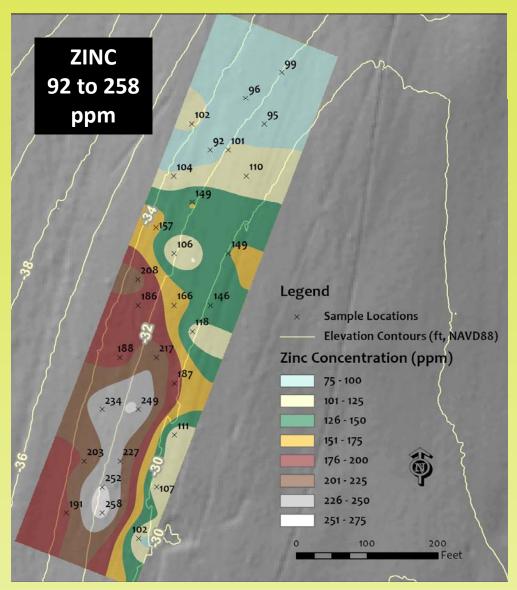

Methods – Anti-degradation Assessment

- Focused on DP-PDS comparisons that failed antidegradation for both IS and CS samples
- For contaminant X, PDS>DP conc., then fail (degradation)
- Anti-degradation "failures" for DP-PDS comparisons were determined using a 2-tailed Student's T-test
 - i.e., is the DP concentration of contaminant X significantly different from the PDS concentration?
- 10 rounds of stratified random sampling, with repeat use of cores was allowed

Results - Field Sampling

- Samples contained within the proposed sampling grid area
- Fairly even coverage of the grid area

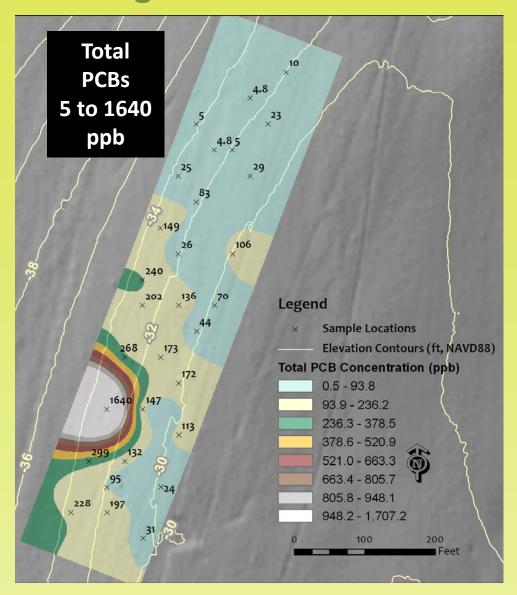
Chemical:	Zinc	total PCBs	4,4'-DDD	4,4'-DDE	4,4'-DDT
Parameter					
SEF FW SQG	130	60	16	9	12
Units	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg
IS30 DP avg (n=3)	94.7	10.3	2.5	2.6	2.7
IS30 DP stdev	2.5	0.6	1.2	1.1	1
IS30 PDS avg (n=3)	156	138	5.3	3.8	5.9
IS30 PDS stdev	7.6	27.7	1.7	0.1	7
IS30 Anti- degradation	fail*	fail*	fail*	fail?	fail?
All Cores DP avg (n=30)	103	6.7J (avg)	2.0	2.4	2.0 U
All Cores DP stdev	4.8	4.4	0.7	0.6	NA
All Cores PDS avg (n=30)	157	156	4.9	5.4	5.9
All Cores PDS stdev	55	294	2.9	2.4	18.2
All Cores Anti-degradation	fail*	fail*	fail?	fail?	fail?


^{* -} t-statistic < 0.05, assumed heteroscedastic variance

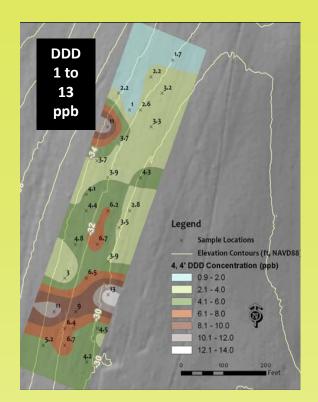
Results (Conventional) – Zinc

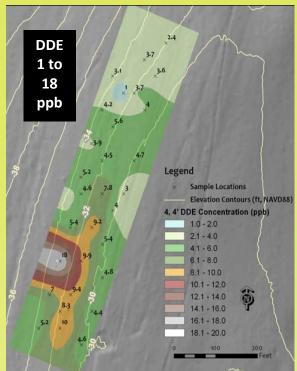
Post-dredge Surface

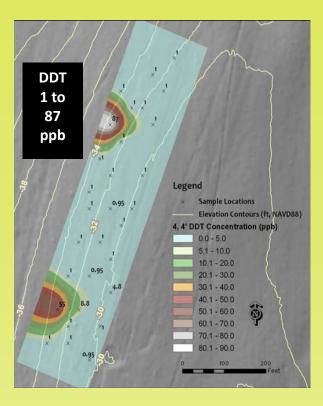
Parameter	Zn (ppm)	
All Cores	157	
PDS avg (n=30)		
All Cores PDS stdev	55	


SQG = 130 ppm

Results (Conventional) – PCB Aroclors Post-dredge Surface


Parameter	Total PCBs (ppb)
All Cores PDS avg (n=30)	156
All Cores PDS stdev	294


SQG = 60 ppb



Results (Conventional) – DDx

Post-dredge Surface

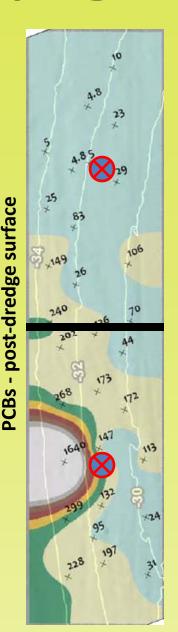
Parameter	DDD (ppb)	DDE (ppb)	DDT (ppb)
All Cores PDS avg (n=30)	4.9	5.4	5.9
All Cores PDS stdev	2.9	2.4	18.2
SQG =	16 ppb	9 ppb	12 ppb

Results - Conventional Sampling

(Stratified, Random Sampling)

1 Core, 10 Randomly Selected Cores

- DP sediment suitable in 10/10 (100%) of samples
- PDS material failed in 60% of randomly selected cores (6/10)
- Anti-degradation failed for 90% of randomly selected cores (9/10)



Results – Conventional Sampling

(Stratified, Random Sampling)

2 Cores, 10 Randomly Selected Pairs

- DP sediment suitable in 10/10 mathematically composited pairs
- PDS material and anti-degradation failed in all 10 mathematically composited pairs (10/10)

Results – Conventional Sampling

(Stratified, Random Sampling)

3+ Cores, 10 Randomly Selected Groupings

- 3 cores (n=10/stratum)
 AND
- 5 cores (n=10/stratum)
 mathematical composite
- SAME results as paired cores
- 6-core combinations were not examined

PCBs - post-dredge surface

Discussion

- Intent of applying IS estimate the "true" mean concentration of contaminants, AND compare them to the individual core results for DP and PDS suitability
- Incremental samples (n=3) showed much less variability than the conventional samples (n=30)

BUT

 Getting at the "true" concentration of contaminant X in a "block" of sediment is not the objective of evaluations under the SEF...

The objective is to determine if contaminant X is above or below the SQG, AND get the same result **consistently** to support sound regulatory decisions

Discussion

- Contaminants in the DP sediment were consistently below the SEF SQGs –
 - One core **consistently** represented DP material for suitability determination at PO Bar
- Contaminant concentrations varied in the PDS layer –
 e.g., highly variable PCB concentrations

HOWEVER

- Compositing 2 to 3 cores consistently represented the PDS at PO Bar for both:
 - suitability determination (not suitable)
 - o anti-degradation evaluation

Conclusions

- DP material sampled in the FNC was deposited since the last dredging event
 - DP material from relatively uncontaminated upstream sources
 - Contaminant distribution is uniform in the DP material
- Contaminant concentrations in PDS are highly variable, but 3 cores were sufficient (PDS failed every time)
- High intensity (overkill) core sampling unnecessary to represent DP or PDS at sites with uniform contamination
- Study has limited applicability to projects with cleanup objectives

Acknowledgments and Q&A

Participating Agencies and Staff:

Wendy Briner

Mark Siipola

Laura Inouye

Jeremy Buck

Jonathan Freedman

Dan Gambetta

Thank You to our Contractors:

Marine Sampling Systems, Port Orchard, WA

Funded under:

