FEASIBILITY STUDY OF A TRAILING SUCTION HOPPER DREDGER’S SHIPPING PARAMETERS - ANALYSIS BY PROGRAMMING

Author: Sheng Li, Chong-lin Tao, Wei Li, Kai-feng Liu

CCCC SHANGHAI DREDGING CO., LTD
Contents

INTRODUCTION

CALCULATION PRINCIPLE

Calculating mud volume in hopper
Fitting increasing curve of mud in hopper
Ideal production efficiency calculation
Fuel consumption calculation per 10000 m³
Reference method

WORKING PRINCIPLE

CONCLUSIONS
The trailing suction hopper dredger’s working time is divided into two parts: the dredging time and the sailing time. Usually, the sailing distance is fixed, and the sailing time is fixed too. So how to control dredging time based on the mud increasing condition in hopper to improve the production efficiency of the whole working cycle is the problem we need to solve.

The solution method I propose is calculating the dredging time based on construction parameters by programming.
Calculating mud volume in hopper

Ship's draft and the liquid level height in hopper are gathered by sensors and liquid level radars. Using these two parameters the mud volume in hopper can be calculated through the displacement method.

\[W = \frac{G - V \times r_w}{r_s - r_w} \]

- \(G \) — ship displacement (t);
- \(V \) — hopper capacity (m³);
- \(r_w \) — water density, take 1.025 (t/m³);
- \(r_s \) — undisturbed soil density (t/m³).
But during shipping process, there is a lot of turbulence in the hopper when pumping the slurry in, which makes the liquid level height gathered by radar fluctuates a lot and further leads to errors in the hopper capacity, so the mud volume calculated through displacement method is not accurate.

In order to calculate the mud volume in hopper accurately, we need to correct the liquid level height. The specific method is: do correcting based on the mud shipping stage and the height changing situation of the overflow weir.

After comparison tests for several kinds of methods, the most accurate correction process is summed up.
Liquid level height correction process

1. Receive current liquid level height.
2. Compare to the liquid level height received 10s ago, judge the height difference is bigger than 0.3m or not.
3. If the height difference is bigger than 0.3m:
 - If $(\text{liquid level height 10s ago}) < (\text{overflow weir height} + 0.3m)$, then the current liquid level height is corrected to:
 - $(\text{liquid level height 10s ago} + 0.085m)$ (note: shipping with 2 dragheads)
 - $(\text{liquid level height 10s ago} + 0.0425m)$ (note: shipping with 1 draghead)
 - If $(\text{overflow weir height} + 0.3m) < (\text{liquid level height 10s ago}) < (\text{overflow weir height} + 0.6m)$, then the current liquid level height is corrected to:
 - $(\text{liquid level height 10s ago})$ (note: when shipping in overflow stage)
 - If $(\text{liquid level height 10s ago}) > (\text{overflow weir height} + 0.6m)$, then the current liquid level height is corrected to:
 - $(\text{liquid level height 10s ago} - 0.13m)$ (note: reducing overflow weir height)
4. Final liquid level height.
1、Calculating mud volume in hopper

Comparison chart of hopper capacity before and after correction
2、Fitting increasing curve of mud in hopper

The mud volume in hopper can be calculated accurately based on corrected hopper capacity. We calculates the mud volume in hopper each 10s, and according to all of the calculated mud volume values, we can figure out one equation which describes the increasing trend of mud load in hopper through the least square method.

Set mud increasing curve equation is:

\[y = ax^2 + bx \]

- \(x \) — dredging time (10s);
- \(y \) — mud volume in hopper (m³).

Set \(y_{real} \) as real mud volume in hopper;
Set \(S \) as sum of variance of \(y_{real} \) and \(y \), then:

\[
S = \sum_{i=1}^{n} (y_{real} - y_i)^2 = \sum_{i=1}^{n} (y_{real} - ax_i^2 - bx_i)^2
\]
When S is minimal, the coefficients a and b fit the increase trend of mud in hopper, so according to the extreme principle, calculate the partial derivative of a and b respectively, and the partial derivative equals to 0:

$$\frac{\partial S}{\partial a} = \sum_{i=1}^{n} (2x_{i}^4a - 2x_{i}^2y_{\text{real}} + 2x_{i}^3b) = 0$$

$$\frac{\partial S}{\partial b} = \sum_{i=1}^{n} (2x_{i}^2b - 2x_{i}y_{\text{real}} + 2x_{i}^3a) = 0$$

By setting simultaneous equations, the calculation formula for a and b can be obtained:

$$a = \frac{\sum x_{i}^2 \times \sum x_{i}^2y_{\text{real}} - \sum x_{i}^3 \times \sum x_{i}y_{\text{real}}}{\sum x_{i}^2 \times \sum x_{i}^4 - \sum x_{i}^3 \times \sum x_{i}^3}$$

$$b = \frac{\sum x_{i}y_{\text{real}} - \sum x_{i}^3a}{\sum x_{i}^2}$$

When the value of a and b is calculated out, the curve fitting the increasing trend for mud in hopper can be obtained.
In order to achieve the best production efficiency, the ship should control the dredging time based on the mud volume in hopper and the sailing time. In here, we fit the increasing curve of mud in hopper and use the derivative algorithm to find out the ideal dredging time.

The principle of the derivative algorithm for dredging time calculation
3. Ideal production efficiency calculation

The key point of the derivative algorithm is to find out the tangent point on the mud loading curve with the line which crosses the zero point.

The principle of the derivative algorithm for dredging time calculation

mud volume in tank: \(y \) (\(m^3 \))

mud volume in tank: \(y \)

the best dredging time: \(X_{point of tangency} \)

mud increasing trend curve

The principle of the derivative algorithm for dredging time calculation
The calculation principle

Mud loading equation: \[y = a \times (x - c)^2 + b \times (x - c) \]

Tangent equation: \[y = n \times x \]

- \(a \) and \(b \) are coefficients.
- \(c \) is the time of sailing time (10s);
- \(x \) is dredging time of the current ship load (10s);
- \(n \) is the slope of the tangent,
 \[n = \frac{dy}{dx} = 2a(x - c) + b \]
By setting simultaneous equations of above formulas, the tangent point can be obtained.

\[x_{\text{tangent point}} = \frac{-\sqrt{a^2c^2 - abc}}{a} \]

Use \(x_{\text{tangent point}} \) to minus sailing time \(c \), the ideal dredging time can be obtained.

\[x_{\text{ideal}} = x_{\text{tangent point}} - c \]

The ideal production efficiency is:

\[P_{\text{ideal}} = \frac{ax_{\text{ideal}}^2 + bx_{\text{ideal}}}{x_{\text{tangent point}}} = \frac{a(x_{\text{tangent point}} - c)^2 + b(x_{\text{tangent point}} - c)}{x_{\text{tangent point}}} \]
Fuel consumption calculation per 10000 m³ of mud removal

During production, the fuel consumption is made up of sailing and dredging fuel consumption and is mainly calculated based on instantaneous diesel engine power.

sailing and mud discharging fuel consumption (t):
\[y_{sailing} = \sum_{n=0}^{c} \frac{194.3 \times 10 \times (w_{left} + w_{right})}{10^6} \]

dredging and shipping fuel consumption (t):
\[y_{dredging} = \sum_{n=c}^{x-c} \frac{194.3 \times 10 \times (w_{left} + w_{right})}{10^6} \]

fuel consumption per 10000 m³ mud (t/10000m³):
\[T_{fuel consumption} = \frac{y_{sailing} + y_{dredging}}{a(x-c)^2 + b(x-c)} \times 10000 \]

194.3 is the instantaneous fuel consumption of the diesel engines (g/kw*h);
c is the time of sailing (10s);
x is dredging time of the current ship (10s);
w_{left} and w_{right} are respectively the instantaneous power of portside and starboard engines (kw).
4. Fuel consumption calculation per 10000 m³ of mud removal

CALCULATION PRINCIPLE

Increasing trend of construction fuel consumption

Changing trend of fuel consumption per 10000m³ of mud production
During the dredging process, fuel consumption per 10000 m³ decreases with the increasing of mud volume in the hopper.

When the fuel consumption is the lowest, the production efficiency is the best and the ship should stop loading and start transporting at this moment when the economy is the best.
5、Reference method for production efficiency and fuel consumption per 10000m³

During actual construction, the operators should pay attention to the following points:

(1) The more data, the more accurate the calculation results will be, the program must be set to calculate after 15 minutes once dredging.

(2) In the early 30 minutes the data quantity is limited and the calculation result has large fluctuations, but it will become more stable with the extension of dredging time and the accuracy will increase gradually.

(3) While dredging and shipping, the operators should try to make the shipping curve approach and be maintained near the tangent, which means the real production efficiency approaches the ideal production efficiency. And the curve of fuel consumption will decline gradually and keep horizontal.

(4) At the later stage of dredging and shipping, the shipping curve becomes gradually horizontal and deviates from the tangent. When this happens, the operators should stop dredging and start transporting.

(5) When dredging and shipping, the operators should try to raise the concentration of slurry as far as possible.
During project construction, if calculate the ideal production efficiency by hand, the calculation process is complicated and the result is not visual. In order to calculate automatically, we need a calculation program to do this work accurately and quickly.

The trailing suction hopper dredger construction technology

The calculation principle

Write the automatic calculation program by VBScript

Analysis computer

LAN

Server

The increasing situation of mud in hopper
Fuel consumption situation
Time of dredging and shipping
Time of sailing
The ideal production efficiency
This program is divided into two parts, the server side program and the client program. The server side program runs in the server and gathers construction data, and it sends data to the client program through LAN. The client program monitors communication ports in real time, when it receives the data, it will corrects, analyzes, calculates and displays the results visually.

- Server side program sends data
- Client program receives data
- Correct liquid level height
- Calculate mud volume in hopper
- Fit increasing curve of mud
- Calculate the ideal production efficiency
- Calculate real-time fuel consumption of construction
- Calculate real-time fuel consumption per 10000m³
- Output construction parameters in form of chart
The working windows of the server side program and the client program.
The construction data gathered by calculation program are:

- Slurry speed of portside pump
- Slurry speed of starboard pump
- Liquid level height in hopper
- Overflow weir height
- Mud hopper capacity
- Ship displacement
- Portside, starboard engine power
- Natural soil density
Key technology

Use **winsock** control and **scktcp** communication protocol to transfer data.

The server side program sends data and the client program monitors this over the whole course of events which makes the data transmission happen in real time and be stable.

Proposed for the first time:

- Correcting principle for the hopper capacity
- Fitting increasing curve of mud in hopper with the least square method
- Calculating ideal production efficiency with derivative algorithm
- Calculating fuel consumption based on instantaneous diesel engine power

This program records construction parameters and do calculation every 10s which can balance the processor pressure and give accurate calculation results.
Today I introduce the automatic calculation principle for production efficiency and fuel consumption per 10000m³ of mud and other key project construction parameters. And also introduce the key technology and running process of the automatic calculation program. I hope to share my experience to colleagues around the world to promote the level of the trailing suction hopper dredger’s construction technology and to establish a wonderful world.
THANK YOU