IMPROVING CALCULATION OF ELEVATION OF CONTAMINATION USING V-SAM INSTEAD OF CONVENTIONAL VIBRACORE METHODOLOGY:

Portland Harbor Superfund Site Case Study

WEDA Pacific Chapter October 2023

Presented by Teal Dreher, PE Floyd|Snider

Importance of Accurate Data

- Sediment characterization data is used to calculate extent and depth of contamination
- Calculated elevation of contamination is basis for design decisions and dredge prism
- Estimating the correct extent of contamination is crucial for a successful project
 - Missed contaminated material can result in additional sampling and dredging
 - \odot Excess removal is costly for the project
- With marine projects, everything is blind

Potential Implications on Cost and Schedule

• The uncertainty associated with estimating in-situ DOC bml can limit the efficacy of precision remediation dredging, which can affect the cost, schedule, and overall success of remedial actions

Vibracore Measurements

- Length of core tube (L_{tube}) Headspace = recovered sediment (L)
- H is depth of penetration (field measured)
- For full penetration, H = L_{tube} and S = Headspace
- Percent Recovery (%R) = L / H * 100
- S measurement is where uncertainty lies in conventional vibracoring!

Uncertainty in Conventional Techniques

• Static Method

 \odot Assumes all material loss is from bottom of core upon retrieval

• Stretch Method

O Assumes uniform recovery throughout drive

Vibracoring Sediment Acquisition Monitoring (V-SAM)

- Measures incremental depth to mudline inside and outside of core tube
- Incremental depth of penetration (d_i) and incremental headspace (h_i) are recorded at various stages through the drive, typically in 1' to 3' intervals
- At start of drive, h_i = L_{tube} with adjustments for location of fathometer
- Incremental L and H are calculated from obtained values

Example DOC Calculation Using All 3 Methods

- Assumes 16' drive with 12' of recovered sediment
- V-SAM shows 2 feet of missed material at start of drive and then uniform recovery throughout drive
- Sample from the 6-7' interval is bottom of contamination

Case Study: Portland Harbor Superfund Site

- Project area along the PHSS was selected for study
- Comparison between historical subsurface sediment data that used conventional vibracore methods and more recent data that used V-SAM
- Project area includes an off-channel slip and an area along the main channel of the Willamette Waterway

Data Used for Case Study

- Historical Data
 - \odot 56 subsurface cores collected between 1997 and 2018
 - All used conventional vibracore methods for determining uncertainty within core
- 2021 PDI Data
 - \odot 74 sampling stations, all used V-SAM during core collection

	AVERAGE INCREMENT OF DATA	AVERAGE PERCENT
NUMBER OF CORES	COLLECTION (FT)	RECOVERY, TOTAL
74	1.9	83%

Observed Sediment Trends using V-SAM

- Losses from bottom of core tube during retrieval
- Missed sediment at start of drive
- Increments with greater than 100% recovery

Observed Sediment Trends using V-SAM

			PERCENT OF INTERVALS	PERCENT OF INTERVALS
DRIVE	AVERAGE PERCENT	MEDIAN PERCENT	WITH LESS THAN	WITH GREATER THAN
INCREMENT	RECOVERY	RECOVERY	50% RECOVERY	100% RECOVERY
FIRST	51%	56%	45%	1%
MIDDLE	84%	85%	9%	19%
END	122%	100%	3%	49%

Methodology

• Core pairs for comparison of historical vs. recent data

 \odot Historical core had to meet following criteria:

- Have PCB contamination above the PHSS Remedial Action Level (75 ug/kg)
- Vertically delineated by at least one underlying clean sample
- Located within 75 feet of a 2021 PDI sample
- 14 historical cores met criteria and were used for comparison
 - $\odot\,11$ locations located within the slip
 - \odot 3 locations located along the main channel

		DISTANCE BETWEEN CORES	DIFFERENCE IN EOC
2021 PDI SAMPLE	HISTORICAL SAMPLE	(FT)	(FT)
PDI-01A	LW2-C089-B	21	-3.9
PDI-02A	LW2-C092-D	67	-2.9
PDI-03A	LW2-C094	11	2.5
PDI-04A	LW2-C093	16	-2.9
PDI-04B	SC-S031	59	-1.1
PDI-05B	LW2-C084	46	-2.4
PDI-06A	LW2-C091	1	-3.1
PDI-08A	LW2-C090	18	-5.5
PDI-10A	LW2-C086	38	-3.5
PDI-10A	LW2-C087	56	-3.7
PDI-12A	LW2-C088	54	-3.2

15

Comparison of Along the Waterway

		DISTANCE BETWEEN	DIFFERENCE IN
2021 PDI SAMPLE	HISTORICAL SAMPLE	CORES (FT)	EOC (FT)
PDI-18A	LW2-C099	10	2.3
PDI-20A	LW2-C103	11	5.6
PDI-21A	LW2-C106	28	4.3

Comparison of EOC Along the Waterway

Discussion of Differences in EOC

• 10 out of 11 samples in slip underestimated the EOC

 \odot More unconsolidated fine sediment at surface

• The one sample that deviated from this was primarily classified as clay

All 3 samples along the channel overestimated the EOC

 More bed shear; less unconsolidated fine sediment
 Potentially a greater impact of the intervals with >100% recovery

Potential Effects on Remedial Design and Costs

- Assume each sample represents a 150'x150' area (~ 0.5 acre)
- Total of 7.2 acres represented by samples

AREA	AREA (ACRES)	MISSED SEDIMENT (CY)	OVERDREDGED SEDIMENT (CY)
SLIP	5.7	26,700	2,100
MAIN CHANNEL	1.5	0	10,200

• Extrapolating to cover project area...

AREA	AREA (ACRES)	MISSED SEDIMENT (CY)	OVERDREDGED SEDIMENT (CY)
SLIP	17	80,000	6,300
MAIN CHANNEL	28	0	184,000

Potential Effects on Remedial Design and Costs

- 80,000 CY of missed sediment...
 - \odot Recharacterization of project area
 - \circ Redesign/re-mobilization
 - \circ 40 barges of sediment
 - SCHEDULE!

184,000 CY of overdredged sediment...
 At \$160 per CY for transload, transport and disposal at Subtitle D landfill, ~\$29M

Summary

Accurate data matters!

• V-SAM can greatly improve uncertainty in site characterization as opposed to vibracoring with conventional methods

Thank you

Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

teal.dreher@floydsnider.com

(206) 292-2078

www.floydsnider.com