

Understanding Measures of Water Quality: Choosing the Appropriate Method for Permit Compliance

Shelly Anghera, Ph.D., Steve Cappellino and Andrew Martin

September 7, 2012 WEDA Pacific

Why does WEDA membership care?

- Environmental risk
- Water quality (WQ) criteria exceedances can impact:
 - 1. Production (schedule)
 - 2. Equipment
 - 3. Increased monitoring
 - 4. Budget

Lower Newport Bay Dredging

- Original permit:
 - Daily water quality monitoring
 - Weekly chemistry, toxicity
 - Turbidity criteria < 20% difference
 - > \$800,000

Solution

- Regular communication with Regional Water Quality Control Board (RWQCB)
- Use of site specific criteria related to dredging activities → related to TSS
- Phased monitoring program
 - Intense when needed, relaxed when not
- Site specific considerations
 - Long-term benefits for short-term impacts
 - Meet fill site schedule
 - Protection of eelgrass

Result

- Effective monitoring to inform dredger
- Rigorous science to support RWQCB
- Completion of dredging program without delays due to over-protective water quality issues

Outline

- Short primer on WQ monitoring in Southern California
- Common scientific challenges
- Lower Newport Bay: Special Study
 - Demonstrate how these WQ measures can be used

Permits

- Dredging activities in California require waste discharge requirements (WDR) from the RWQCB
- The WDR will contain:
 - Water quality criteria
 - Required monitoring
- Results in two common problems:
 - 1. Use of overly conservative criteria
 - 2. Required monitoring may not measure the "actual" impacts of dredging equipment

Overly Conservative Criteria

- Chronic criteria used for temporary impact
- Basin Plan Criterion used in permits:
 - pH, DO, temperature, turbidity
 - Toxicity
 - Chemistry

Determining WQ Impacts of Dredging

- Dredging causes resuspension of sediments, TSS most direct measure
- Turbidity and transmissivity are used as surrogates for estimating amount of resuspended sediment

Disconnect with Dredging Impacts

- Turbidity: measure of light scattered due to inorganic and organic particulates
 - Basin Plan Criteria = < 20% difference
- Transmissivity: measure of light penetration through set distance in water
 - Ocean Plan Criteria = any significant difference
 - Enclosed bays = USACE = < 40% difference
 - LA RWQCB = < 30% difference

Example of Use of Criteria in Monitoring

Measure	Background	Criteria	WQ limit	Impact to dredging
Turbidity	5 to 10 NTU	30% difference	7 to 10 NTU	100% of days
Transmissivity	50 to 80%	30% difference	20 to 50%	40% of days

NTU = nephelometric turbidity unit

Total Suspended Solids (TSS)

- CSTF study evaluates effects
- Includes marine fish, birds, invertebrates
- 10 percent of organisms experience acute sub-lethal impacts from TSS when concentrations exceeded 100 mg/L

Special Study: Lower Newport Bay

- Currently dredging:
 - May to August 2012
 - 300,000 cy contaminated and clean material
 - Many areas adjacent to eelgrass beds
- Original permit:
 - Daily water quality monitoring; > \$800,000
 - Turbidity < 20% difference from background
- Modified permit:
 - ~\$300,000 monitoring program
 - Turbidity < 50 NTUs

Special Study Objectives

- Describe relationship between TSS, turbidity, and light transmittance for Lower Newport Bay
- Recommend transmissivity and turbidity monitoring threshold
 - For evaluation of dredging related impacts
 - Predictive of elevated TSS
 - Protective of marine organisms
 - Acute sub-lethal effects to marine fish, birds, invertebrates

Data Collection

- Synoptically collected transmissivity, turbidity, and TSS
 - Pre-dredge evaluation at reference locations
 - First five days of dredging
 - Reference, 100 ft upstream, 100 ft downstream, and 300 ft downstream of dredging

Relationship Between WQ Measures

Transmissivity and Turbidity

 Water quality results for stations located in the vicinity of the active dredging operations

Relationship Between WQ Measures

TSS and Transmissivity

TSS and Turbidity

Measured WQ During Dredging

Protective of Acute Effects

Protective of Acute Effects

Protective of Acute Effects

- Proposed monitoring
 - If transmissivity and turbidity predict TSS to be greater than 50 mg/L,
 - 300 ft down current, midwater
 - Conduct additional monitoring 24 hours later
 - If conditions indicate TSS is greater than 50 mg/L for more than 24 hours, implement dredge operator BMPs

- Slowing down
- Increasing precision

Summary of Water Quality During Dredging

- ~100 days of dredging
- 41 monitoring days
 - Water quality comparing 300 ft station to reference
 - At surface, mid, or bottom depths

Permit	Exceedance Days	
USACE	24 (59%)	
LARWQCB	31 (76%)	
Negotiated SARWQCB	1 (2%)	

Setting the New Standard

- Early and frequent communication with RWQCB
- Use of site specific criteria related to dredging activities → related to TSS
- Phased monitoring program
 - Intense when needed, relaxed when not
- Site specific considerations

Acknowledgements

- City of Newport Beach
- Santa Ana RWQCB

