TAMPA HARBOR MAINTENANCE DREDGING
EGMONTE KEY BENEFICIAL RE-USE

High Silt Content Material Placement
Traditional Template vs.
Cross Shore Swash Zone (CSSZ)

Coraggio Maglio, PE, Jase D. Ousley, PG, Dr.
Aubree Hershorin, & Millan Mora, PE

US Army Corps of Engineers (USACE)
Engineer Research and Development Center
Coastal and Hydraulics Laboratory
&
USACE Jacksonville District

23 June 2015
Outline

• **Background**
 - Ideal opportunity for R&D to address environmental concerns and regulations
 - Egmont Key National Wildlife Refuge – “Sand Rule”
 - Material is approx. 20% “fines” (passing 230 sieve)
 - Definitions and Example Projects
 - Time series aerials

• **Dredging and Placement**
 - Volumes and losses
 - Compaction - Cone Penetrometer
 - Mass Balance of “fines”
 - Fines Content, Density, Munsell Color
 - Light Attenuation and Turbidity

• **Conclusions**
 - Traditional vs. Cross Shore Swash Zone Placement
 - Acknowledgments
Definitions

• **Traditional Placement** – placement of material to “build a beach” using longitudinal dikes to increase settlement. This project’s purpose is to create a wide flat dry beach berm.
Definitions

• **Cross Shore Swash Zone Placement (CSSZ)** – placement of dredged material by discharging material directly into the swash zone until a delta builds and then extending outfall shore perpendicular thus building a “point” (salient) feature.
Case Examples – Mayport 1972

- Cross Shore Swash Zone Placement (CSSZ)

Clean Water Act (CWA)
Case Examples – Sand groynes Delfland 2009

• 3 concentrated nourishments 200k m³ each
• Uniformly redistributed over a stretch of coast of about 2.5km by the impact of waves and currents

• https://publicwiki.deltares.nl/display/BWN/Building+Block+-+Feeder+beaches+-+Practical+Applications
Case Examples – Delfland Sand Engine 2011

- Concentrated nourishments 28M m³
- Intertidal ponds were intentional for added habitat
Previous Placement Events

1999

2002

2005

2007

Slides Courtesy of USF
Previous BU — Egmont Key 2001, 2006 & 2011

- Ebb dominated system

Node

Dec 2003

Feb 2007

Shoal growth from nourishment

Currents

Shoal growth from nourishment
Dredging and Placement

- Traditional Beach Placement
- Cross Shore Swash Zone Placement

320K cy placed
107K cy placed

UAV flight aerial 16 March 2015

Image Courtesy of USACE Jacksonville District
Dredging and Placement Volumes

Traditional (North) Placement Area:

<table>
<thead>
<tr>
<th></th>
<th>Cubic Yards (cy)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredged in Channel</td>
<td>500,037</td>
<td>100.0%</td>
</tr>
<tr>
<td>Pumped to Beach</td>
<td>319,712</td>
<td>63.9%</td>
</tr>
<tr>
<td>Surveyed on Beach</td>
<td>222,068</td>
<td>44.4%</td>
</tr>
</tbody>
</table>

Cross Shore Swash Zone Placement Area:

<table>
<thead>
<tr>
<th></th>
<th>Cubic Yards (cy)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredged in Channel</td>
<td>180,512</td>
<td>100.0%</td>
</tr>
<tr>
<td>Pumped to Beach</td>
<td>107,225</td>
<td>59.4%</td>
</tr>
<tr>
<td>Surveyed on Beach</td>
<td>68,479</td>
<td>37.9%</td>
</tr>
</tbody>
</table>
Cone Penetrometer

Pre-Placement

<table>
<thead>
<tr>
<th>Depth (in)</th>
<th>0"-6"</th>
<th>6"-12"</th>
<th>12"-18"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min (psi)</td>
<td>100</td>
<td>100</td>
<td>198</td>
</tr>
<tr>
<td>Max (psi)</td>
<td>580</td>
<td>700</td>
<td>617</td>
</tr>
<tr>
<td>Avg (psi)</td>
<td>293</td>
<td>406</td>
<td>457</td>
</tr>
<tr>
<td>Median (psi)</td>
<td>295</td>
<td>431</td>
<td>515</td>
</tr>
<tr>
<td># samples</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Refusals</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>% Refusal</td>
<td>5%</td>
<td>21%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Post-Placement

<table>
<thead>
<tr>
<th>Depth (in)</th>
<th>0"-6"</th>
<th>6"-12"</th>
<th>12"-18"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min (psi)</td>
<td>50</td>
<td>125</td>
<td>200</td>
</tr>
<tr>
<td>Max (psi)</td>
<td>600</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Avg (psi)</td>
<td>328</td>
<td>482</td>
<td>436</td>
</tr>
<tr>
<td>Median (psi)</td>
<td>300</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td># samples</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Refusals</td>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>% Refusal</td>
<td>14%</td>
<td>29%</td>
<td>48%</td>
</tr>
</tbody>
</table>

- Increase in refusals due to shell hash areas
Mass Balance – Egmont Key 2014

<table>
<thead>
<tr>
<th>Tampa Harbor MD - Egmont Key 2014</th>
<th># of Samples</th>
<th>Sample by weight Fines (passing 230 sieve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Channel</td>
<td>80</td>
<td>20.7%</td>
</tr>
<tr>
<td>Discharge Slurry</td>
<td>27</td>
<td>18.4%</td>
</tr>
<tr>
<td>Swash zone</td>
<td>27</td>
<td>17.5%</td>
</tr>
<tr>
<td>Beach samples</td>
<td>22</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

- **Assumptions**
 - 100% slurry water conveyed to the wash zone
 - Slurry and swash zone sampling a closed system

- **Relationships**
 - Swash Zone samples carried 13.2% of the Discharge Slurry fines out of the beach template, thus leaving 5.2% on the beach.

*Sampling methods at discharge slurry not ideal

*Only Traditional Placement
Fines Content and Density

Tampa Harbor MD - Egmont Key 2014

<table>
<thead>
<tr>
<th>Material</th>
<th># of Samples</th>
<th>Avg. % by wt. passing 230 sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ</td>
<td>80</td>
<td>20.7</td>
</tr>
<tr>
<td>pre-Beach</td>
<td>6</td>
<td>0.03</td>
</tr>
<tr>
<td>post-Dredged</td>
<td>21</td>
<td>0.51</td>
</tr>
<tr>
<td>Traditional</td>
<td>14</td>
<td>0.52*</td>
</tr>
<tr>
<td>CSSZ</td>
<td>7</td>
<td>0.49*</td>
</tr>
</tbody>
</table>

Sampling occurred within 72 hours of placement completion

Tampa Harbor MD - Egmont Key 2014

<table>
<thead>
<tr>
<th>Material</th>
<th># of Samples</th>
<th>Value avg. (kg/m³)</th>
<th>% Greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-Beach</td>
<td>7</td>
<td>1405.1</td>
<td>0.0%</td>
</tr>
<tr>
<td>post-Dredged</td>
<td>17</td>
<td>1471.6</td>
<td>4.7%</td>
</tr>
<tr>
<td>Traditional</td>
<td>11</td>
<td>1476.0</td>
<td>5.0%</td>
</tr>
<tr>
<td>CSSZ</td>
<td>6</td>
<td>1463.5</td>
<td>4.2%</td>
</tr>
</tbody>
</table>

Images Courtesy of GLDD
Munsell Color

<table>
<thead>
<tr>
<th>Tampa Harbor MD - Egmont Key 2014</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of Samples</td>
<td>Value avg.</td>
</tr>
<tr>
<td>In-situ</td>
<td>80</td>
<td>4.36*</td>
</tr>
<tr>
<td>pre-Beach</td>
<td>13</td>
<td>5.9</td>
</tr>
<tr>
<td>post-Dredged</td>
<td>24</td>
<td>5.3</td>
</tr>
<tr>
<td>Traditional</td>
<td>16</td>
<td>5.0</td>
</tr>
<tr>
<td>CSSZ</td>
<td>8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

*Munsell color value<5 unacceptable for beach placement in Florida

NOTES: Triplicate measurements of hue, value, and chroma were collected from three areas on each moist sand sample using a digital colorimeter (CR-400, Konica Minolta, Osaka, Japan).
Light Attenuation
Long-term Monitoring

Egmont Key, FL
Long-term Deployment Map
14 Nov – 15 Dec

Image Courtesy of GLDD
Light Attenuation Background Monitoring – Pipe #1
Light Attenuation Monitoring – Tire
Light Attenuation Long-term Monitoring

Turbidity versus PAR values

Dredging 19 Nov. – 28 Dec.

Dredging 21 Jan. – 6 Mar.
CSSZ Drawbacks vs. Traditional Placement

• **Issues**
 - Material is not immediately visible to public
 - Remediation for unacceptable material far more difficult
 - Egmont Key not identical to other projects, low energy, with inlets
 - Each contractor has different operations: longitudinal dike length, equipment, and methodology

• **Risks**
 - If parameters imposed on nearshore placement are more restrictive this placement method could become more expensive than traditional beach placement
 - Project shutdowns for turbidity
CSSZ Benefits vs. Traditional Placement

- Less linear feet of beach impacted for equivalent volume
- Reduced environmental Impacts
 - Turtle nest relocations
 - Ponding
 - Cementation
 - Munsell Color
 - Shorebird impacts
- Lower cost
 - Construction – less beach equipment
 - Reduced pipeline extensions
 - Maintenance – less escarpment, tilling
- Reduced beach traditional use impacts
 - Sunbathing and Water sports
- Another tool in the BU toolbox
- Purely performance based regulations
 - More beneficial reuse
 - Lower costs - better bids due to more equipment able to perform work

Image Courtesy of GLDD
Conclusions

- CSSZ placement operations within intent of “Sand Rule” – reasonable assurance
- Grain Size sampling indicates significant “fines” losses
 - 2.4% of original (in-situ) “fines” remaining on beach = 0.5% total
 - 98% of “fines” lost
- Munsell Color and Compaction similar to pre-conditions
- Better RSM practice, better environmental practice, and better economic practice
- Engineering with Nature (EwN)
Acknowledgments

Great Lakes Dredge and Dock – Mr. Manny Vianzon, Ms. Lynn Nietfeld, Ms. Kate Mason, Mr. Michael Tolivar, Mr. Robert Ramsdell III, Mr. Bill Hanson
University of South Florida – Dr. Ping Wang, Mr. Zach Taylor, Mr. Mark Horwitz
U.S. Fish and Wildlife Service – Mr. Peter Plage and Mr. Stan Garner
Florida Department of Environmental Protection – Mr. Tom Watson
Tampa Bay Pilots Association – Ms. Leslie Head
Florida Fish and Wildlife Conservation Commission – Ms. Robbin Trindell
USACE Tampa Field Office – Mr. Andy Cummings, Ms. Tina Underwood, Ms. Erin Duffy
USACE Jacksonville District – Mr. Bryan Merrill, Mr. Mike Hensch, Mr. Vic Wilhelm, Mr. Tom Spencer.
USACE Engineer Research and Development Center - Dr. Katherine Brutsché, Mr. Matthew Taylor, Mr. John Bull, Ms. Cheryl Pollock, Dr. Deborah Shafer, Mr. Tommy Kirkland, Dr. Jacob Berkowitz, Mr. Jason Pietroski
U.S. Coast Guard – Mr. Darren Pauly, Mr. Ivan Meneses
Thank You!

Questions?

Coraggio Maglio
Coraggio.Maglio@usace.army.mil
Phone: (601) 634-4150