Readily Biodegradable Solutions Meet Environmental, Performance Challenges for Dredging Operators

June 16, 2014

Terresolve Technologies, Ltd. DBA RSC Bio Solutions.
EnviroLogic® is a registered trademark of Terresolve
Technologies, Ltd. SAFECARE® is a registered trademark of
Gemtek Products, LLC. GreenSorb® is a registered trademark of
Sorbent Green, LLC. Copyright® 2014. RSC Bio Solutions. All
Rights Reserved.

RSC Overview

Radiator Specialty Company

- Diversified, family-owned private enterprise
- Deeply experienced formulator, manufacturer and distributor of cleaners, lubricants and functional fluids
- · Family of trusted brands

A separate, connected platform

- Full array of innovative lubricating and cleaning products & services that delivers superior performance and systems savings without sacrificing environmental safety
- Leverages the strength and reach of RSC, investing in emerging and advanced technology and creating new-to-the-world solutions

Partners and Investments

Terresolve Technologies

- Founded in 1996
- Acquired in 2012
- Leader in biodegradable, highperformance industrial lubricants

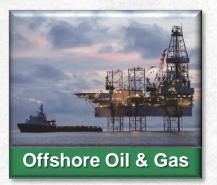
SAFECARE

Gemtek Products

- · Exclusive technology license
- Proprietary biobased surfactant blends and solvents

GREENSORB

Sorbent Green


- Exclusive distribution rights
- High performance and safe absorbent technology

Terresolve Technologies, Ltd. DBA RSC Bio Solutions. EnviroLogic® is a registered trademark of Terresolve Technologies, Ltd. SAFECARE® is a registered trademark of Gemtek Products, LLC. GreenSorb® is a registered trademark of Sorbent Green, LLC. Copyright® 2014. RSC Bio Solutions. All Rights Reserved.

Introduction to RSC Bio Solutions

Key Markets Served

Applications which demand high levels of performance and benefit from risk reduction RSC BIO Solutions offer.

Dredging Industry Challenges

Unauthorized Fluid Discharges

- Leaks far outpace catastrophic events
- Have to be reported, cleaned up
- Difficult to prevent

Consequences of Spills

- Lost productivity
- Costly fines, remediation
- Damage to environment
- Negative public relations

2013 VGP changes are designed to address this issue.

U.S. EPA Vessel General Permit 2013

Applicable to:

- All commercial vessels > 79 ft
 - New builds: at time of construction
 - Existing assets: at next dry dock
- Recommended, not yet mandated, for vessels < 79 ft
- Operating within three nautical miles of
 - U.S. Coastline
 - Great Lakes
 - Inland Waterways

U.S. EPA Vessel General Permit 2013

Requires all vessels to use:

- Environmentally acceptable lubricants (EALs) in all oil-to-sea interfaces unless technically infeasible
- Cleaners and detergents for deck washdowns are required to be phosphate free (permit p. 112) and non toxic
- VGP maintains regulations on "sheen" originating from EPA Oil Pollution Act (OPA 90 – 1990)

U.S. EPA Vessel General Permit 2013

Oil to Sea interfaces include:

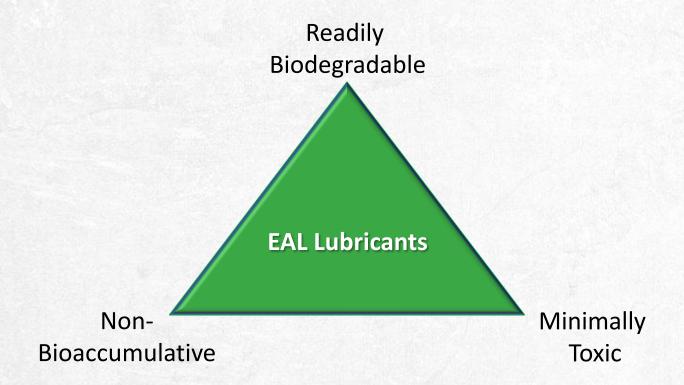
- Oil-lubricated stern tubes
- On-deck, underwater or submerged machinery

hydraulic cutterscranes

thruster bearingswire ropes

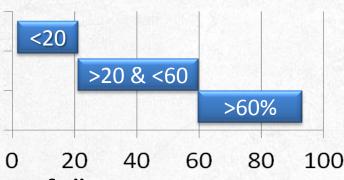
– CPP propellers– Z drives

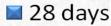
dump bargesexcavators


Any component with potential to leak lubricants is included.

US EPA Vessel General Permit 2013

How does the EPA define EALs?




Biodegradation: Commonly Misused Term

- Not all solutions are the same
 - Biodegradation according to ASTM definition

Non-biodegradable Inherently biodegradable Readily biodegradable

"environmentally safe"

"friendly"

VGP compliant

Aquatic Toxicity

- U.S. Fish and Wildlife Classification
 - Used to categorize by Exposure, Lethal Limits 50 values

Toxicity Classifications	
	Aquatic EL50 or
Relative Toxicity	LL50 (mg/L)
Super Toxic	< 0.01
Extremely Toxic	0.01 - 0.1
Highly Toxic	0.1 - 1.0
Moderately Toxic	1.0 - 10
Slightly Toxic	10 - 100
Practically Non-Toxic	100 - 1000
Relatively Harmless	> 1000

EnviroLogic Products are classified as Relatively Harmless.

Viable Alternatives Can Reduce Cost

Environmentally acceptable lubricants (EALs)

- Don't
 - Eliminate the spill occurrence
 - Eliminate the need to report
 - Eliminate the need to clean up
- Do
 - Perform equal to or better than petroleum based lubricants
 - Mitigate the discharge's impact
 - Environmental
 - Regulatory

Improved Productivity = Improved Profitability

Four Misperceptions about EALs

- "All EALs are the same"
- "HEPR type fluids are not biodegradable"
- "All EALs are technically infeasible"
- "EALs are not compatible with seals and other lubricants"

Truth: There Are Four Classifications of EALs Recognized By VGP and ISO

ISO 6743/4

- Hydraulic Environmental Triglycerides (HETG)
- Hydraulic Environmental Polyalkylene Glycols (HEPG)
- Hydraulic Environmental Synthetic Esters (HEES)
- Hydraulic Environmental PAO (polyalphaolefins) and related products (HEPR)

Particular application factors affect EAL selection.

Conventional Vegetable Fluids (HETG)

- Good Frictional Characteristics and Viscosity Index
 - Shorter oil life expectancy than time between dry docks
- Oxidative Stability
 - Under high temperature application more susceptible to oxidation
- Hydrolytic Stability
 - More prone to hydrolysis in the presence of water (typically > 1%)
- Care must be taken

Polyalkylene Glycol Synthetic (HEPG or PAG)

- Fire Resistant
- Not Compatible with Conventional Seals or Filters
- Not Compatible with Petroleum, Vegetable, Esterbased Oils
- Absorbs Water (creates rust and acid)

Synthetic Esters (HEES)

- Hydrolytic Unstable
 - "unzips" with water
 - forms acid
- Seal Deterioration

Vegetable Oil + Alcohol + Acid Synthetic Ester + Water + Heat

Bio-polyolefin Synthetic (HEPR)

- Durable
- Low Cost/Long Fluid Life
- Separates From Water
- Good Seal Compatibility
- Broad Temperature Range

Many EnviroLogic EAL offerings are HEPR type.

Conclusions

- Many factors to consider when deciding to convert to readily biodegradable lubricants
- A readily biodegradable lubricant may be more expensive initially, but could save money in the long term
- Readily biodegradable lubricants have been proven in the field with performance equivalent to petroleum based fluids

Questions?

Thank You!

For more information, please contact Matt Houston mhouston@RSCbio.com
1 (800) 661-3558

rscbio.com

Products you need for problems you don't.™

