

#### A Case Study of the Engineering and Design of the Cole's Bayou Marsh Restoration Project (TV-63)









Amanda Taylor, E.I. Project Engineer Coastal Protection and Restoration Authority Dr. John D. Foret Project Manager NOAA National Marine Fisheries Service

#### committed to our coast

# TV-63 Project Background and Marsh Loss

- Located in Lower Vermilion Parish about 5 miles Southwest of Intracoastal City, La
- Project area wetlands undergoing loss rate of -0.42% per year based on 1983 to 2011 USGS data
- Wetland loss processes include subsidence/sediment deficiency and storm impacts resulting in interior ponding and pond enlargement
- Salt water intrusion and hydrologic changes have resulted in a more floatant marsh increasing susceptibility to tidal energy and storm damage.



Dredging Summit & Expo 2015

Coastal Protection and Restoration Authority of Louisiana







# TV-63 Design Goals

- Create 365 acres of brackish marsh in recently formed open water areas
- Nourish 53 acres of existing brackish marsh
- Increase freshwater and sediment inflow into interior wetlands by improving project area's hydrology



### Percent Inundation Determination

- Percentage of the year a certain elevation of land would be flooded based on water levels found in that region.
- Brackish marsh optimal range is flooded between 10% and 65% of the time.

| ТҮО | Elevation (ft, NAVD88) - %<br>inundation |
|-----|------------------------------------------|
| 10% | 1.26                                     |
| 20% | 0.96                                     |
| 30% | 0.80                                     |
| 40% | 0.68                                     |
| 50% | 0.6                                      |
| 60% | 0.50                                     |
| 65% | 0.43                                     |
| 70% | 0.42                                     |
| 80% | 0.25                                     |
| 90% | -0.01                                    |

|      | Elevation (ft, NAVD88) - % |
|------|----------------------------|
| TY20 | inundation                 |
| 10%  | 1.95                       |
| 20%  | 1.65                       |
| 30%  | 1.49                       |
| 40%  | 1.37                       |
| 50%  | 1.29                       |
| 60%  | 1.19                       |
| 65%  | 1.12                       |
| 70%  | 1.11                       |
| 80%  | 0.94                       |
| 90%  | 0.68                       |

TY20

Dredging Summit & Expo 2015

Coastal Protection and Restoration Authority of Louisiana

# Project Surveys

- Bathymetric, Topographic, and Magnetometer surveys taken from April 2013 to June 2013 and from October 2014 to November 2014.
- Transect Spacing:
  - Marsh Fill Areas: 250 ft. grid format
  - Borrow Area: 500 ft.
  - Equipment Access Corridor and Dredge Pipeline Alignment: 1000 ft.
- Position and Elevation shots taken at 25 ft. intervals along transect.
- Magnetometer surveys taken in a 500 ft. grid format in the marsh fill and along the borrow area, equipment access corridor, and dredge pipeline alignment transects.
- Magnetometer surveys also located the existence of two (2) pipelines and one (1) flowline in project area vicinity.

## Healthy Marsh Elevation Survey

- Five (5) locations
- 20 survey points taken at each location

| Location | Elevation (ft NAVD88) |
|----------|-----------------------|
| M-1      | 0.88                  |
| M-2      | 0.77                  |
| M-3      | 0.71                  |
| M-4      | 0.60                  |
| M-5      | 0.80                  |
| Average  | 0.75                  |

# Geotechnical Investigation

- 26 soil borings taken from February 2013 to April 2013
  - 10 borings in Marsh Fill Area (20-80 ft. in depth)
  - 6 borings in Borrow Area (20 ft. in depth)
  - 8 borings at Water Control Structure locations (20-80 ft. in depth)
  - 2 borings along Freshwater Bayou shoreline (30 ft. in depth)
- Laboratory tests included:
  - Soil compressive strength, moisture content, organic content, grain size analysis, specific gravity, consolidation, and Atterberg limits
- Analysis of the samples included:
  - Determination of Soil Characteristics
  - Slope Stability Analysis for Earthen Containment Dikes
  - Settlement Analysis for Marsh Fill and Earthen Containment Dikes

#### Marsh Fill Settlement Curves

Marsh Area #1-2 - Post Construction Marsh Settlement Curves



7/1/2015

Coastal Protection and Restoration Authority of Louisiana

#### Marsh Fill Settlement Curves

Marsh Area #3 - Post Construction Marsh Settlement Curves



# Hydrodynamic Modeling

- Modeled the hydrodynamics of the project area and surrounding marshes
  - Adaptive Hydraulics Model (ADH)
  - Tracked water movement and salinity
  - Calibrated with data from monitoring stations set up in and around project area
    - Collected data on water levels, salinity, TSS, etc.
- Four (4) scenarios including existing conditions
  - Scenario 0-Existing Conditions
  - Scenario 1-Marsh Creation Only
  - Scenario 2-Marsh Creation plus Water Control Structures at Invert=0.0'
  - Scenario 3-Marsh Creation plus Water Control Structures at Invert=-2.0'

| Scenario | Features                      | Flow In (cfs) | Flow Out (cfs) | Net Flow Out of Marsh(cfs) | Average Water Level (ft) |
|----------|-------------------------------|---------------|----------------|----------------------------|--------------------------|
| Existing | -                             | 19.8          | 23.9           | 4.1                        | 0.96                     |
| 1        | Marsh Fill at +1.3ft, NAVD88  | 15.9          | 19.6           | 3.7                        | 0.99                     |
| 2        | Marsh Fill at +1.3ft, NAVD88  |               |                |                            |                          |
|          | Conveyance Channel around MC3 | 6.2           | 10.6           | 4.4                        | 1.22                     |
|          | 48in Culverts (Invert=0.0ft)  |               |                |                            |                          |
| 3        | Marsh Fill at +1.3ft, NAVD88  |               |                |                            |                          |
|          | Conveyance Channel around MC3 | 40.5          | 43.8           | 3.3                        | 1.02                     |
|          | 48in Culverts (Invert=-2.0ft) |               |                |                            |                          |

Dredging Summit & Expo 2015

Coastal Protection and Restoration Authority of Louisiana

# Hydrodynamic Modeling

- Conveyance Channel
  - Containment borrowed from outside of Marsh Creation Fill Area 3
  - Maximum bottom elevation=-5.0 ft NAVD88
  - Side Slopes= 1(V):4(H)
- Reconnects trenasses that would otherwise be cut off by the construction of Marsh Creation Fill Area 3



#### Marsh Creation Design



Coastal Protection and Restoration Authority of Louisiana

#### **Target Marsh Elevation**

#### Marsh Area #1-2 and Earthen Containment Dike Settlement Curves



Coastal Protection and Restoration Authority of Louisiana

#### Target Marsh Elevation

Marsh Area #3 and Earthen Containment Dike Settlement Curves



Coastal Protection and Restoration Authority of Louisiana

# Earthen Containment Dike Design-Marsh Creation Fill Areas 1 & 2



# Earthen Containment Dike Design-Marsh Creation Fill Area 3

- Crown Elevation:
  - +3.5 feet NAVD88
- Side Slope: 1(V):4(H)
- Top Width: 5.0 feet
- Containment
  Borrowed from
  outside of fill area



## Borrow Area Design

- Proximity to Project Area
- Available vs. Required
  - Volumes computed using survey cross sections
  - Required volume = Fill Volume \* C:F (1.5)
- Available: ~3.3 MCY
- Required: ~2.7 MCY



#### Borrow Area Design



# Equipment Access Corridor Design

- Maximum bottom elevation: -9 feet NAVD88
- Maximum bottom width: 70 feet
- Side Slopes: 1(V):3(H)
- Temporary disposal areas on either side of corridor will be backfilled once construction is completed

![](_page_21_Figure_5.jpeg)

### Equipment Access Corridor Design

![](_page_22_Figure_1.jpeg)

# Equipment Access Corridor Design

- 10 inch Acadian Pipeline crosses Equipment Access Corridor
- 2-3 inch Acadian Flow Line removed on 4/17/15

![](_page_23_Figure_3.jpeg)

Dredging Summit & Expo 2015 Coastal Protection and Restoration Authority of Louisiana

#### Hydrologic Restoration Design Water Control Structure Design

- 48" corrugated HDPE pipe
  - Invert=-2.0 ft. NAVD88
  - Placed in existing breaches or through existing dike
- One way check valves to facilitate North to South flow
- Typical Section

![](_page_24_Figure_6.jpeg)

#### Hydrologic Restoration Design Duckbill Check Valve

- Duckbill check valves
  - Less maintenance required than with steel gate
  - Lightweight and durable
  - Easy to install

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

## Conclusions

- Impounded and semi-impounded areas pose unique issues when designing marsh creation and hydrologic restoration projects.
- Unidirectional flow and consistent freshwater and sediment input are essential in maintaining the longevity of this and many other marsh creation projects.

### Questions?

# Hydrologic Monitoring Stations

- Six monitoring stations located in and around project area
- Monitored water levels, salinity, TSS, etc. from April 2013 to October 2013
- Data used to calibrate Hydrodynamic model and provide subordinate station data for Tidal Datum and Percent Inundation calculations

![](_page_28_Figure_4.jpeg)

# Tidal Gage Locations and Tidal Datum Determination

#### **Subordinate Station**

- TV63-04
- Set up for TV-63 project
- Located in center of largest marsh fill cell
- 6 months of continuous data (04/13 10/13)

#### **Control Station**

- CRMS2041
- Approximately 4 miles from TV-63
- 5 Years of Continuous Data (7/08-1/14)

| KNOWN VARIABLES                                                                     | ELEV.<br>FT NAVD88 |  |  |  |  |
|-------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| MHW <sub>c</sub> = 5 Year Mean High Water At Control Station                        | 1.86               |  |  |  |  |
| $MTL_{C} = 5$ Year Mean Tide Level At Control Station                               | 1.51               |  |  |  |  |
| $MLW_{C} = 5$ Year Mean Low Water At Control Station                                | 1.15               |  |  |  |  |
| $MR_{C}$ = 5 Year Mean Tide Range At Control Station                                | 0.72               |  |  |  |  |
| TL <sub>C</sub> = Mean Tide Level For The Observation Period At Control Station     | 1.78               |  |  |  |  |
| R <sub>C</sub> = Mean Tide Range For The Observation Period At Control Station      |                    |  |  |  |  |
| TL <sub>s</sub> = Mean Tide Level For The Observation Period At Subordinate Station | 0.84               |  |  |  |  |
| R <sub>s</sub> = Mean Tide Range For The Observation Period At Subordinate Station  | 0.19               |  |  |  |  |
| CALCULATED VARIABLES                                                                |                    |  |  |  |  |
| $MHW_s = 5$ Year Mean High Water At Subordinate Station (MHW = MTL + MR/2)          | 0.68               |  |  |  |  |
| $MTL_s = 5$ Year Mean Tide Level At Subordinate Station (MTL = TL+MTL-TL)           |                    |  |  |  |  |
| MLW <sub>s</sub> =5 Year Mean Low Water At Subordinate Station (MLW=MTL-MR/2)       |                    |  |  |  |  |
| $MR_s=5$ Year Mean Tide Range At Subordinate Station (MR=(MR*R)/R)                  | 0.20               |  |  |  |  |

- MHW, MLW in surrounding marshes and Little Vermilion Bay
  - MHW= +1.85 ft. NAVD88
  - MLW= +1.16 ft. NAVD88

### Relative Sea Level Rise (RSLR)

- CPRA utilizes its Planning Division to assist with calculating RSLR
- The RSLR rate estimated is 0.03451 ft/year (0.6902 ft at end of project life).

![](_page_30_Figure_3.jpeg)

## Earthen Containment Dike Slope Stability

- Slope/W used to compute factors of safety
- Minimum acceptable factor of safety for this area determined to be 1.5

|               |                                             |                                      |                       | Factors of Safety                   |                                     |                                        |  |
|---------------|---------------------------------------------|--------------------------------------|-----------------------|-------------------------------------|-------------------------------------|----------------------------------------|--|
| Marsh<br>Area | Estimated Berm<br>Crest El.<br>(ft. NAVD88) | Borrow<br>Excavation<br>Offset (ft.) | Berm<br>Side<br>Slope | Circular<br>Arc In<br>Berm<br>Slope | Circular<br>Arc Bearing<br>Capacity | Global<br>Sliding Toward<br>Borrow Pit |  |
| 1             | +3.0                                        | 20                                   | 4H:1V                 | 2.02                                | 2.74                                | 2.66                                   |  |
|               | +4.0                                        |                                      |                       | 1.61                                | 2.22                                | 2.18                                   |  |
| 2             | +3.0                                        | 20                                   | 4H:1V                 | 3.97                                | 4.89                                | 3.31                                   |  |
|               | +4.0                                        |                                      |                       | 2.71                                | 2.86                                | 2.62                                   |  |
| 3             | +3.0                                        | 20                                   | 4H:1V                 | 2.02                                | 3.10                                | 2.65                                   |  |
|               | +4.0                                        |                                      |                       | 1.61                                | 2.38                                | 2.08                                   |  |

# Marsh Fill Settlement Analysis

- Utilized Terzaghi's 1-D linear Consolidation Theory and PSDDF
- Goals:
  - 1. Determine target marsh fill elevation
    - Settlement of underlying soils (compaction)
    - Self weight consolidation
  - 2. Settle to optimal brackish marsh range (10%-65% inundated) within first few years after construction and remain within range until end of project life

![](_page_32_Figure_7.jpeg)

### Earthen Containment Dike Design

| Marsh Creation<br>Area | Design<br>Height (ft) | Side Slopes | Crown<br>Width (ft) | Factor of<br>Safety | Minimum<br>Offset (ft) | Cut to<br>Fill | Volume<br>of Fill<br>(yd <sup>3</sup> ) | Volume of<br>Cut (yd³) |
|------------------------|-----------------------|-------------|---------------------|---------------------|------------------------|----------------|-----------------------------------------|------------------------|
| 1                      | 3.0                   | 4H : 1V     | 5                   | 2.02                | 20                     | 1.3            | 7,244                                   | 9,417                  |
| 2                      | 3.0                   | 4H : 1V     | 5                   | 3.97                | 20                     | 1.3            | 9,226                                   | 11,994                 |
| 3                      | 3.5                   | 4H : 1V     | 5                   | 1.61                | 20                     | 1.3            | 62,614                                  | 81,398                 |
| Total                  |                       |             |                     |                     |                        |                | 79,084                                  | 102,809                |

\*1.3 Cut to Fill recommended by Ardaman & Associates

# Marsh Fill Area Design

- Determined final and constructed target marsh elevations from settlement curves.
- Goal: To maintain healthy marsh that is flooded between 10% and 65% of the year during the majority of the project life.

| Marsh<br>Creation<br>Area | Fill<br>Height (ft) | Area (Acres) | Cut to Fill | Volume of Fill<br>(yd³) | Volume of Cut<br>(yd³) |
|---------------------------|---------------------|--------------|-------------|-------------------------|------------------------|
| 1                         | 2.0                 | 28           | 1.5         | 85,288                  | 127,932                |
| 2                         | 2.0                 | 108          | 1.5         | 318,163                 | 477,244                |
| 3                         | 2.5                 | 282          | 1.5         | 1,373,450               | 2,060,175              |
| Totals                    | I                   | 418          |             | 1,776,901               | 2,665,352              |

\*Volumes for Marsh Creation Cells 1 and 2 include filling of containment dike borrow areas.

# Borrow Area Design

- Pipeline of unknown diameter located near southwest corner of borrow area
  - 100 ft. buffer from edge of borrow area cut to pipe alignment

![](_page_35_Figure_3.jpeg)

#### Dredge Pipeline Alignment

![](_page_36_Figure_1.jpeg)