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Introduction 

• Environmental 
management 

• Fate of turbidity plumes 

• Large-scale dispersion 
simulations 

• Source terms needed 

• Only visible at  
water surface 
 

Far field 

Near field 

Near-field behaviour below surface? 

3D, near-field plume simulations 
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Objectives  

Objectives of recent developments in plume dispersion modelling 

General 
• Increase accuracy of scenario turbidity predictions  

(tender phase + operational) 
• Decrease probability of project shutdown due to  

turbidity threshold violations 

Specific 
• Improve near-field models for overflow plumes (CFD) 
• Develop fast but accurate parameterisations for overflow spills 
• Develop simulation tools for all other spills 
• Improve reliability of operational turbidity forecasting 
• Flexible framework for Pro-Active Adaptive Management of spills 
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Different types of sediment spills 

Types of sediment spills taken into account 

• Overflow (TSHD, barges) 

• Draghead (TSHD) 

• Propeller wash (TSHD, self-propelled barges with DP) 

• Cutterhead (CSD) 

• Bucket loss (Backhoe, Grab dredge) 

• Reclamation area runoff 

• Open-water placement 

• Placement using spreader pontoon 
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Requirements for plume dispersion simulations 

• Spill parameterisations (based on near-field models) 
• Soil model project site 
• Equipment characteristics 
• Planning of foreseen dredging activities 

• Near-field models for dispersion of 
specific type of spills: 
• Overflow (with/without green valve) 
• Sidecasting 
• Containment bund runoff 
• Propeller wash 

• Far-field model:  
• Regional model or satellite-based 

altimetry (TPXO) 
• Local flow model 
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iCSM 

Requirements for plume dispersion simulations 

Far-field (tidal) models at continental shelf scale: 
Large-scale tidal propagation models (in-house IMDC, 1000’s of km, in 2D) 
Very efficient due to unstructured grids (1 month in +/- 1h CPU time) 

 

Persian 
        Gulf Gulf of 

Oman 

Gulf of 
Aden 

Red  
  Sea 

Indian 
Ocean 

Tethys 
model 

iSAM 
model 
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Requirements for plume dispersion simulations 

Far-field models at local estuary/coast/port scale: 
Local flow models (10-100 km, usually in 3D) 
At present: usually unstructured grids, focussed on area of interest 
Detailed calibration of tides and flow velocity 
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Requirements for plume dispersion simulations 

• Spill parameterisations (near-field models) 
• Soil model project site 
• Equipment characteristics 
• Planning of foreseen dredging activities 

• Near-field models (CFD): of specific 
type of spills: 
• Overflow (with/without green valve) 
• Sidecasting 
• Containment bund runoff 
• Propeller wash 

• Far-field model:  
• Regional model or satellite-based 

altimetry (TPXO) 
• Local flow model 
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Requirements for plume dispersion simulations 

Near-field models for dispersion of specific type of spills: WHY? 
• Physics in large-scale models not suitable (e.g. hydrostatic assumption, etc.) 
• Grid discretisation in large-scale models not detailed enough  

(for CPU time reasons) 
 

Far field: grid size > 20 m Near field: grid size > 0.1 m 
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Requirements for plume dispersion simulations 

Near-field models for 
dispersion of: 

• Overflow  
(with/without green valve) 

• Sidecasting 

• Containment bund runoff 

• Propeller wash 

Spill as percentage  
of production for: 

• Draghead loss (TSHD) 

• Cutterhead loss (CSD) 

• Bucket loss (Backhoe, Grab dredge) 

• Open-water placement 

• Placement using spreader pontoon 
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Overview 

Introduction 

Objectives of the developments 

Different types of sediment spills  

Requirements for (operational) plume dispersion simulations 

CFD near-field models 

Development of parameterised near-field models 

Implementation in 3D tidal flow models 

Operational turbidity forecasting 
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TSHD 

Research 
Hypothesis 

Near-field model overflow plumes 
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Overview Model development 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 
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Overview Model development 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 

Model matches Experiment ? 
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Overview Model development 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 

Next step: validate upscaling to real-life scale 
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Overview Model development 
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Model matches Field Measurements ? 
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Overview Model development 
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EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 
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Applications: 
 *Simplified Model 

*Influence factors 
* Ship Design 
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Real-scale model 

• 3D CFD 
• 3 phases: water, sediment, air bubbles 
• Resolves large turbulent motions (LES) 
• Full-size TSHD 
• Propellers included (actuator disk) 
• Dynamic air bubble transport model: 

• Lagrangian,  
• Forces: drag, virtual mass, grad(p), g 
• Coalescence 
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Real-scale model 

• CFD simulation result 
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Real-scale model 

Deep water, light mixture 

Shallow 
water 

Air bubble 
concentration 

Deep water, heavy mixture 

! Validation needed 

Monitoring 
campaigns  
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Overview Model development 
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Model matches Field Measurements ? 



5-Jul-16 / WODCON XXI / slide 34 

Results Validation CFD 

Validation Case 1: 
• H=16m ;  D=2m;  W0=1.9 m/s; U∞=1.5 m/s, C0=55 g/l 
• Field measurements: SiltProfiler (vertical profiles of ssc) 
• CFD model: CPU time = 25 hours at 32 CPU’s 
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Results Validation CFD 

Validation Case1: Vertical profiles 
• Measurement carried out at < 200 m for near-field validation 
• Compared with time-averaged model results 

Measured 
CFD Model 
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Overview Model development 

 
 

Lab 
EXPERIMENTS 
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MEASUREMENT 

Model matches Field Measurements ? 

YES! 
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Overview Model development 
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Applications: 
*Influence factors 

* Ship Design 
*Simplified Model 
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Influence of air bubbles 

• Environmental valve: air bubbles -90% (Saremi, 2014) 
• Perform simulations with/without air flow rate reduction 
• But: efficiency of the valve is function of ambient conditions! (Decrop et al., 2015, J. 

Environ. Eng 141 (12)) 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 

Surface plume 

No surface plume 

log(C/C0) 
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Influence of sailing velocity 

Relative velocity sea water - ship 
 
 

2 knots 

6 knots 

log(C/C0) 

 sediment in surface plume x 10 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 
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Overflow position 

• Overflow at stern: plume mixed by propellers 
• Overflow at aft: plume has more time to descend 

Ship 

log(C/C0) 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 
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Ship design: rectangular overflow shaft 

Aspect ratio 1:3 

 Potentially 50% 
reduction of surface 
plume sediment 
concentration 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 
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Parameter model overflow plumes 

Find a simple model that is: 
• Much faster 
• Almost as accurate 

 

A model with output: 
• In suitable form for far-field models input 
→ Vertical profile of sediment flux behind ship 

Parameter model  
= combination of  
• Analytical plume solutions 
• Parameter fits on data of  

+/- 100 CFD model runs 
 

Motivation  
CFD model has high CPU cost,  
not practical in some cases 

 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 
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Parameter model overflow plumes 

• >100 CFD runs,  
with variation of: 
• Current velocity 
• Sailing speed 
• Sediment concentration 
• Overflow diameter, position 
• Air bubble concentration 

 For ‘Model Training’ 

• Model Validation:  
against extra  
dataset CFD results 

• 90%  has  R²>0.5 
• Valid for standard cases,  

for specific cases still  
CFD needed 
 

CFD 
Par. Mod. 

Applications: 
 Influence factors 

Ship Design 
Simplified Model 
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For overflow: 
• Hopper model for sediment content in overflow discharge (Hjelmager et al., 2014) 

• Fast parameter model for near-field overflow plume dispersion (< 1 sec.) 

• Programmed inside far-field modelling software  real-time evolution of overflow flux 

• Distribution of sediment sources is varying with: 
 
 
• Current velocity and direction 
• Sailing speed 
• Sediment Concentration, % fines 
• Overflow diameter and position 

 
 
 

Implementation in far-field models 

Far field model 

Near-field 
Parameter model 

   Source terms 

Currents, tide 
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Implementation in far-field models 

In tender/planning phase: 
• Include all other expected sediment spills  

on the site: 
• Reclamation runoff 
• Bucket loss 
• Draghead 
• … 

• Define evolution in time of  
equipment position, spill rate (kg/s),  
near-field  distribution 

• Implement time series of sediment sources in 3D far-field model 

• Simulate different dredging works scenario cases 

• Select work strategy with minimum turbidity impact at receptors 
 
 



5-Jul-16 / WODCON XXI / slide 51 

Overview 

Introduction 

Objectives of the developments 

Different types of sediment spills  

Requirements for (operational) plume dispersion simulations 

CFD near-field models 

Development of parameterised near-field models 

Implementation in 3D tidal flow models 

Operational turbidity forecasting 



5-Jul-16 / WODCON XXI / slide 52 

Implementation in far-field models 

Real-time plume forecasting 
• In operational phase 
• Simulate, Evaluate, Adapt 

Pro-active Adaptive Management 
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Pro-active Adaptive Management (PAM) 

 

 
 

 
 EVALUATE vs 

ENV. 
CRITERIA 

DREDGING 
SCENARIO 

DREDGE 
& 

MONITOR 

MEASUREMENT 
DATA  

SEDIMENT 
PLUME 
MODEL 

ADAPT 

WIND 

HD 

WAVES 

SED TRANSPORT 



5-Jul-16 / WODCON XXI / slide 54 

Conclusions 

• New generation of efficient far-field models 

• Recent developments in CFD for near-field models 

• More accurate plume dispersion simulations: 

• Reduces risk of inaccurate assessment in tender phase 

• Enhances real-time plume dispersion forecasting in operational 
phase 

• Overall: Reducing risk of turbidity threshold violations 

 



Questions? 
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Setup: Test case ‘Vertical plume’ 

• Geometry: 
• Vertical plume as a first test case for the CFD model 

• Mesh: 
• Unstructured tet mesh 
• ‘Inflation layers’ near walls (pipe) 

• Mesh ‘Adaptation’: 
1. RANS simulation on relatively coarse mesh 
2. Refinement where gradients / SSC significant 
3. RANS on refined mesh 
4. LES 
 

 

w 

u 

z 

r 
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Setup: Test case ‘Vertical plume’ 

• Results 
• Self-similarity for z/D > 8 
• Comparison with experiments 
• Good accuracy time-averaged W(r) and C(r) 

 

Decrop, B. et al. (2015). New methods for ADV measurements of turbulent sediment fluxes – Application to a fine sediment plume. Journal of 
Hydraulic Research 53 (3), p 317-331,  
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Setup: Test case ‘Vertical plume’ 

• Results 
• Reynolds stresses accurate: peak value, peak location 
• Turbulent fluctuations C: radial profile correct 
 

 

Decrop, B. et al. (2015). New methods for ADV measurements of turbulent sediment fluxes – Application to a fine sediment plume. Journal of 
Hydraulic Research 53 (3), p 317-331,  
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Experiments 
 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 

Goal of the experiments: 
 
• Insights in sediment plume behaviour 
• Produce data set to compare with model results 
• Preliminary estimate of influence factors: 

• Air bubbles 
• Ship hull 
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• 34 different plumes at scale 1/50 
• Flume: length = 15m, width = 0.8 m, depth = 0.6 m 
• W0 = 4 – 30 cm/s; C0 = 5 – 50 g/l; D = 3.4 – 6.5 cm 
• Sediment: kaolin, d50=4 μm 
• Dynamically scaled: 

• Densimetric Froude number FΔ  
• velocity ratio λ  
 

Experiments 

Upstream 
reservoir 

Downstream 
reservoir 

ASM 2 ASM 1 

ADV’s 

Valve 

Honeycomb 

Ship ‘hull’ 

x 

z 
y 

U0  
 
ρ∞ 
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Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 
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Results 

1. Plume trajectory 
 

 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 

2. Profiles of: 
• Sed. concentration 
• Velocity components 
• Turbulent properties 

 

3. Influence factors 
 
 

Air bubbles 

Ship hull 
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Lab-scale Model 

• Navier-Stokes eq’s for the mixture 
• Models: 

• Multiphase: mixture model (with drift flux term, slip velocity, drag) 
• Turbulence: Large-Eddy Simulation (LES) 

• SGS model: Dynamic Smagorinsky 
  each (x,y,z,t): νt, Dt and Sct 

• Phases mixture model: 
• Liquid phase: fresh water 
• Sediment: spherical, d=4 µm 

• Stokes number << 1  
• Volume concentration 0.2 to 4% 

• Inflow boundary: spectral synthesizer (vortex mimicking) 
• Water surface: rigid lid 

 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 
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Setup : Plume in crossflow 

• Mesh, initial: 
 

 Schematised hull 
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Setup : Plume in crossflow 

• Mesh, refined 
• Optimised number of cells (~106) 

 
 

Based on C (from RANS run)  
Based on strain rate 
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Results 

• Qualitatively : well-known turbulent structures are present: 
2. Counter-rotating vortex pair + double C-peak 

 
 

PIV/PLIF 
measurements, 
Diez et al.  (2005) 

CFD 
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Validation case : Bubble plume in crossflow 

• Case of Zhang et al. (2013) 
• Upward bubbly jet (20 vol.% air) 
• Tracer in jet fluid 
• Centerline tracer plume 
• Centerline bubble plume 

• LES model with three phases: 
• Water 
• Sediment (tracer) 
• Air bubbles: 

• Initial diameter: 1.7 mm 
• Collision model  
Coalescence  bubble size distribution 

• Influence bubbles on sediment plume: ok 
• Separation bubble plume: ok 

 
 
 

 

Sediment plume 

Separating bubble plume 
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Results 

Quantitatively: 
3. Turbulent Kinetic Energy k 

 
 

 

Decrop, B. et al. (2015). Large-Eddy Simulations of turbidity plumes in crossflow. European  Journal of Mechanics - B/Fluids (53), p68-84,  
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Overview Model development 
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EXPERIMENTS 
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MODEL 

 
 

Real-scale 
MEASUREMENT 

Next step: validate upscaling to real-life size 
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Upscaling to realistic scale: 
CFD model with lab geometry 
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Upscaling LES model to prototype scale 

1. Take CFD model lab scale 
2. Scale grid to large scale 

(similarity laws buoyant jets) 
3. CFD simulation 
4. Validation, based on: 

• Trajectories in similarity 
coordinates must coincide with 
lab scale 

• TKE resolved > 80%, for LES 
completeness (Pope, 2004) 

 CFD (large scale, Re=1.9 106) 
 
Physical model (small scale, Re=1.2 104)  
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Results Validation CFD 

• Density current + Surface plume (air bubbles, propellers) 
• 5% of sediments released to ‘far-field’ plume 
• Hypothesis confirmed? 

near-bed density current 

surface plume 
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Measurements 

Determination of sediment 
concentration: 

 
• Sampling inside the overflow (to 

impose in model runs) 
 
 
 

• Measurements and samples in the 
dredging plume 
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Measurements 

 

SiltProfiler: 

• High-res. vertical profiler (free-fall,100 Hz) 

• Wireless connection when above water 

(BlueTooth) 

• CTD 

• 3-step turbidity sensor (0 – 50,000 mg/l) 

• Design avoids seabed disturbance 
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EXPERIMENTS 
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Real-scale 
MEASUREMENT 
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Measurements 

SiltProfiler results 
Consistent profile type: 

1. Diluted surface plume: 10-200 mg/l 
2. Near-bed layer, 2-6m thick: 200-1500 mg/l 
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Measurements 

Transect sailing (near-field, 100-500m from stern) 
 

Across the plume Along the plume 



5-Jul-16 / WODCON XXI / slide 76 

Validation prototype scale CFD (Case 2) 

Case 2: Surface plume (OBS measurements) 
• In situ measurements: lumped, crossing the plume 
• Model output: at centreline 
 Cmax,insitu  should be = Ccentreline,model 
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Results Validation CFD (Site nr 2) 

Validation Case 2: 
• H=39m ;  D=1.1m ; Overflow near stern 

 In contradiction to hypothesis: 100% of sediment released to far-field plume 
 

log(C/C0) 
 

CFD model 

: Measured bottom of plume 
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Environmental valve efficiency 

• 2x 26 cases, with/without valve 
• Valve efficiency = function of surface plume sediment flux with/without 

valve 
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Environmental valve efficiency 

• Valve efficiency turns out to be related to a combination of length 
scales and a Froude number 
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Environmental valve efficiency 

• Decomposition in constructional and operational efficiency 
• Operation has more impact on efficiency than construction 

influence diameter and overflow position influence sailing speed and sediment concentration 
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Influence on surface turbidity 

• Number of overflows 
 
 
 
 
 
 
 
 
 

 
 
 



5-Jul-16 / WODCON XXI / slide 82 

Influence on surface turbidity 

• Sediment load 
 
 
 
 
 
 
 
 
 

 sediment fraction in surface plume much larger for low C0 
 
 
 

C0=10 g/l 

C0=150 g/l 

log(C/C0) 

log(C/C0) 

Applications: 
 *Simplified Model 

* Ship Design 
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Parameter model 

• Motivation: CFD model has high CPU cost, not practical in some cases 
 

Find a simple model that is: 
1. Much faster 
2. Almost as accurate 

 
A model with output: 
 In suitable form for far-field models input 
 Vertical profile of sediment flux behind ship 

 
 

• Parameter model = combination of  
• Analytical plume solutions 
• Parameter fits on data of +/- 100 CFD model runs 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 
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Parameter model 

• O(100) CFD runs, with variation of: 
• Current velocity 
• Sailing speed 
• Sediment concentration 
• Overflow diameter, position 
• Air bubble concentration 

 For ‘Model Training’ 
• Model Validation: against extra 

dataset CFD results 
• 90%  has  R²>0.5 
• Valid for standard cases, for 

specific cases still CFD needed 
 

CFD 
Par. Mod. 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 
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Overview Model development 

Applications: 
*Simplified Model 

*Influence factors 
* Ship Design 
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Influence of air bubbles 

• Environmental valve: air bubbles -90% (Saremi, 2014) 

• Perform simulations with/without air flow rate reduction 

Surface plume 

No surface plume 

log(C/C0) 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 
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Influence of velocity 

Relative velocity sea water - ship 

 
 
 
 
 
 
 
 
 

 sediment in surface plume x 10 
 
 

 

2 knots 

6 knots 

log(C/C0) 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 
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Overview Model development 

Applications: 
*Simplified Model 
*Influence factors 

* Ship Design 
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Overflow position 

• Overflow at stern: plume mixed by propellers 
• Overflow at aft: plume has more time to descend 

Ship 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 

log(C/C0) 



5-Jul-16 / WODCON XXI / slide 90 

Overflow shaft extension 

• Studied earlier by de Wit et al. (2015) 
• C at surface reduced with factor up to 10 

• Still surface plume because of rising air 
bubbles 

dair 

Ship 

extension 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 

log(C/C0) 
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Rectangular overflow shaft 

 Potentially 50% reduction of sediment concentration 

Applications: 
 *Simplified Model 
*Influence factors 

* Ship Design 

Aspect ratio 1:3 
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Overview Model development 

 
 

Lab 
EXPERIMENTS 

 
 

Lab-scale 
MODEL 

 
 

Real-scale 
MODEL 

 
 

Real-scale 
MEASUREMENT 

Applications: 
 *Simplified Model 

*Influence factors 
* Ship Design 
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Future research and applications 

Overflow design (CFD model) 
• Detailed study efficiency of: 

• Shaft extension 
• Rectangular overflow 

• Influence of: 
• Lateral position overflow 
• Number of overflows 

• Inclined overflow exit?  
• Overflow via draghead jetting 
 
Parameter model 
• Real-time plume forecasting 
• Tender-phase dredging strategy 
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