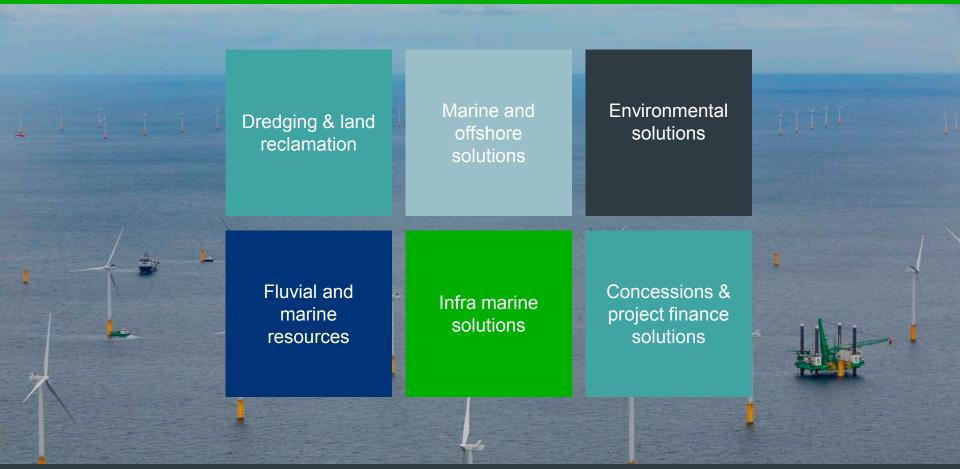
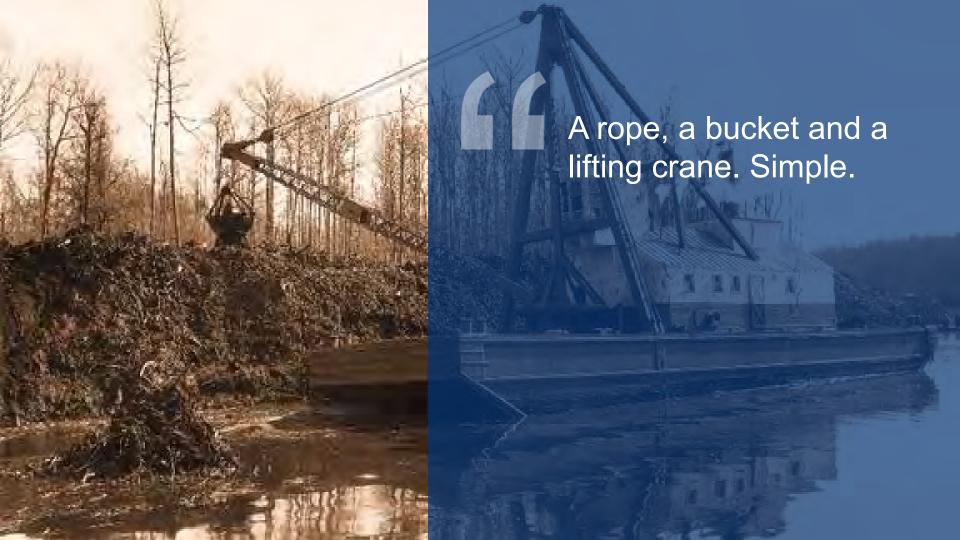
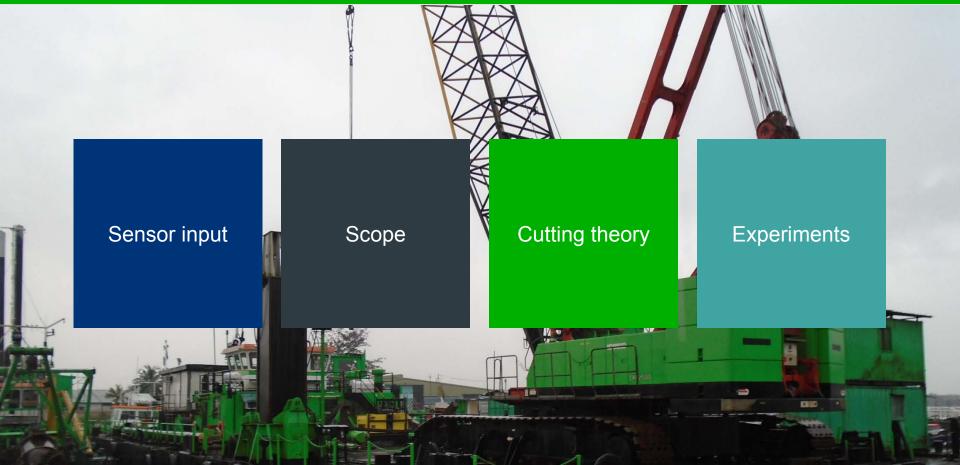


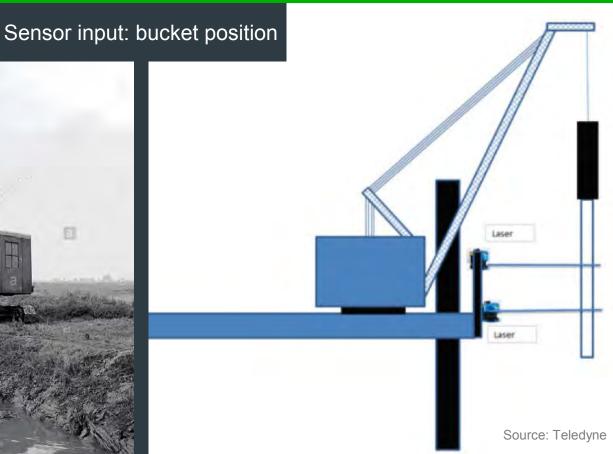
Dredging, Environmental & Marine Engineering


Innovative grab dredging

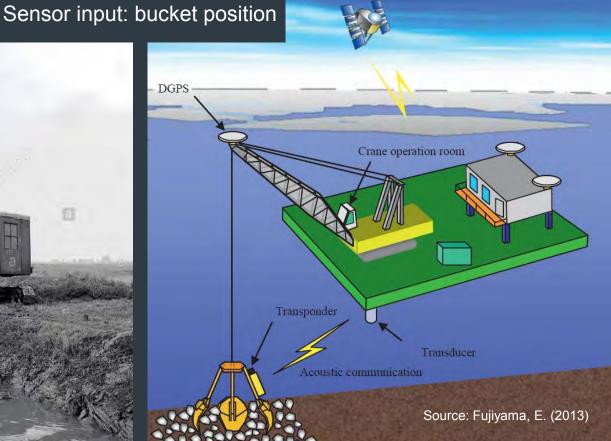

The rebirth of an old technique

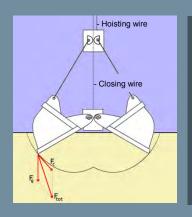
Simon Boel – WODCON XXI – 15/06/2016





Sensor input





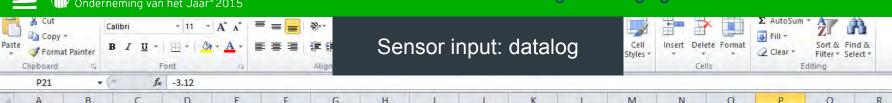
Sensor input: Active Closing Process Control

Standard method

- Lower open grab until seabed
 Hoist closing wire until closure
- Hoist both wires
- Manual / simple autopilot Craters

Active Closing Process Control

- Lower open grab until seabed
- Combined hoisting *closing wire* & reeving out hoisting wire
- Hoist both wires
 - Complex control
- Horizontal profile

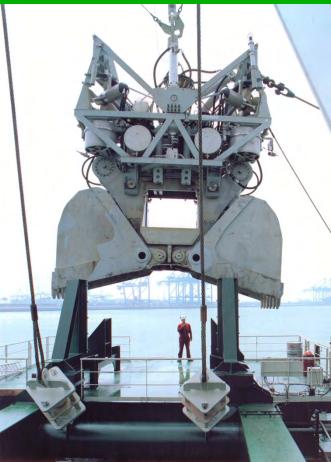


Sensor input: Active Closing Process Control

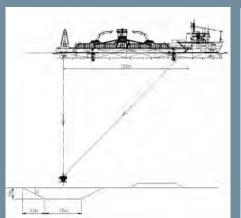
Sensor input. Active Glosing Process Control

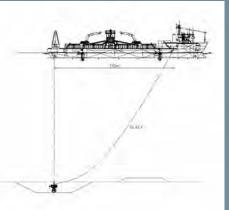
Source: Liebherr

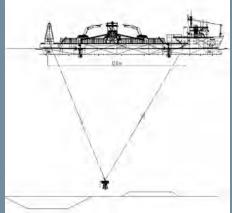
Innovative grab dredging – The rebirth of an old technique

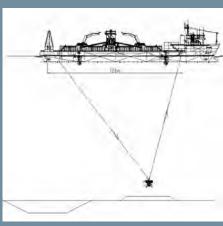

	P21	¥ (=	fx	-3.12															~
24	A	В	С	D	E	F	G	Н	1	1	К	L	М	N	0	P	Q	R	S
1 1	ime (mse Ba	attery Vo En	igine SpeF	eedback Fe	eedback (Fin	ne Learn Fi	ne Learn A,	/F Learni Ig	nition Balg	nition Tc M	anifold / M.	anifold FM	ass Airfl M	ass Airfl Th	rottle Pl A/	F Correc A/	F Sensor Ir	ntake Air Te	mpera
2	0	14.48	1509	0	0	0	1	0.78	16.91	16.5	5.08	-6.96	7.13	1.56	7.04	-2.34	14.7	59	
3	287	14.56	1514	0	0	0	1	0.78	16.91	16.5	5.08	-6.96	7.6	1.58	7.04	-3.12	14.59	59	
4	575	14.48	1506	0	0	0	1	0.78	16.91	17	5.08	-6.96	7.4	1.58	7.04	-3.12	14.59	59	
5	864	14.56	1508	0	0	0	1	0.78	16.91	17	5.08	-6.96	8	P.6	ord keep	-3.12	14.59	59	
6	1151	14.4	1524	0	0	0	1	0.78	16.91	16.5	4.93	-7.11	7.63	1.58	nu Kee	991	14.47	59	
7	1439	14.48	1521	0	0	0	1	0.78	16.91	16.5	4.93	-7.11	7.05	Proce	ess ana	lysis	14.47	59	
8	1727	14.48	1508	0	0	0	1	0.78	16.91	17	4.93	-6.96	7.63	1.6	7,04 ff	ficiencie	14.59	59	
9	2015	14.56	1504	0	0	0	1	0.78	16.91	17.5	4.93	-7.11	7.72	1.56	6.89	-3.91	14./	59	- 1
10	2303	14.48	1515	0	0	0	1	0.78	16.91	16.5	4.93	-7.11	7.28	1.56 -	Earl	y defec	t ident	ification	
11	2589	14.48	1510	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.92	Ćalib	ration o	of predic	11459	odele	
12	2878	14.48	1505	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.76	1.56	7.04	-3.91	14.59	59	
13	3165	14.56	1506	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.39	Stand	dardizat	tion ₆₉	14.47	59	
14	3452	14.48	1514	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.96	L66	6.89	-3.91	14.7	59	
15	3741	14.4	1512	0	0	0	1	0.78	16.91	17	4.93	-6.96	7.72	1.58	6.89	-3.91	14.7	59	
16	4029	14.56	1503	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.59	1.56	6.89	-3.91	14.59	59	
17	4317	14.56	1499	0	0	0	1	0.78	16.91	17.5	4.93	-7.11	7.88	1.6	6.89	-3.91	14.7	59	
18	4605	14.48	1502	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.05	1.54	6.89	-3.91	14.7	59	
19	4908	14.4	1510	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.76	1.6	6.89	-3.91	14.59	59	
20	5195	14.48	1502	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.47	1.58	6.89	-3.12	14.59	59	
21	5484	14.48	1501	0	0	0	1	0.78	16.91	17	4.93	-7.11	7.43	1.58	6.89	-3.12	14.47	59	
22	5771	14.4	1511	0	0	0	1	0.78	16.91	16.5	4.93	-7.11	7.67	1.56	6.89	-2.34	14.59	59	
23	6059	14.48	1511	0	0	0	1	0.78	16.91	16.5	4.93	-7.11	7.55	1.54	6.89	-3.91	14.59	59	-
4 4 1	romraid	derlog_2013	31031_08	4040						177		4							▶ □

Scope

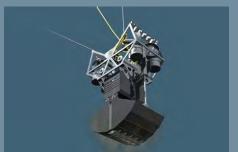


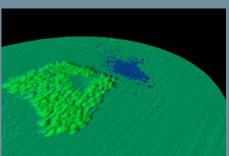






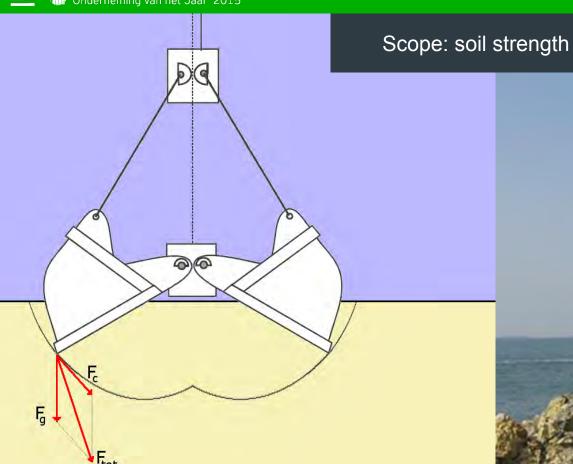
Scope: deep sea



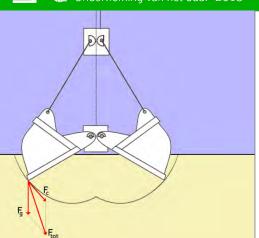

FPV Seahorse

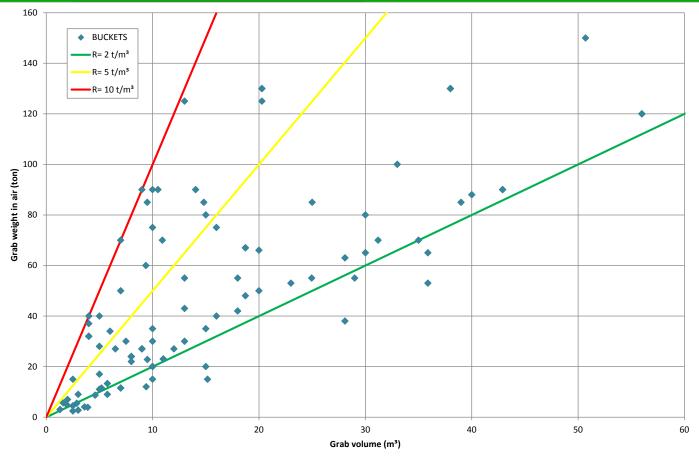
20 m³ / 80 ton 20 cm accuracy Range: 1000 m

2 x 200 kW thrusters



- Accuracy & selectivity
- Horizontal cutting profile
- Minimum spill (shutter plates)
- Minimum upstirring

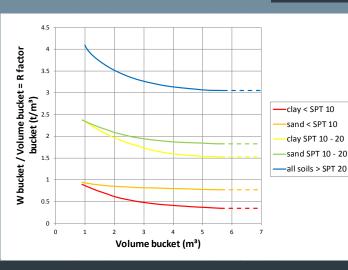


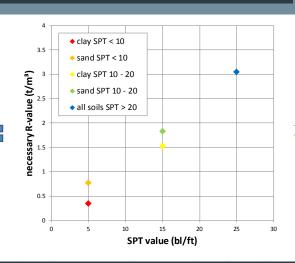


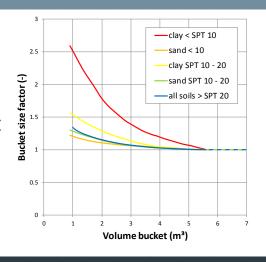
Driving force: Grab Weight (W) Bucket volume (V)

Ratio
$$R = \frac{W}{V}$$

R: 0 - 10Soft soil ~ low R Hard soil ~ high R

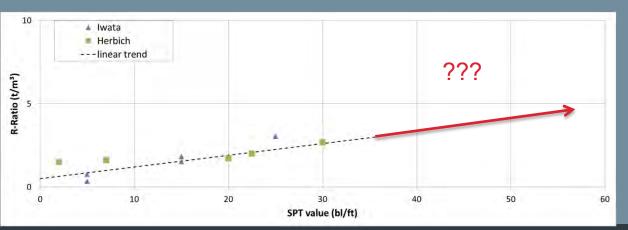



Cutting theory



R-ratio in literature

- Aim: easy correlation soil strength (SPT) R ratio
 - Optimal bucket for given soil
 - Bucket filling for a certain bucket (in given soil)
- Harder soils???



R-ratio in literature

- Aim: easy correlation soil strength (SPT) R ratio
 - Optimal bucket design for given soil
 - Bucket filling for a certain bucket (in given soil)
- Harder soils???

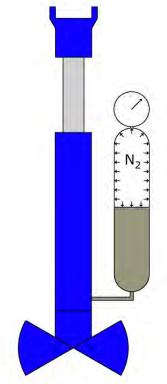
Experiments

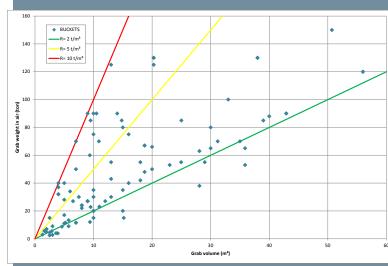
Pressure:

- Allows variable bucket "weights"
- Variation: range of R-values
- Pressure reading ~ cutting force

Tested in different soils:

- R-ratio in function of (known) SPT
- Also in harder soils

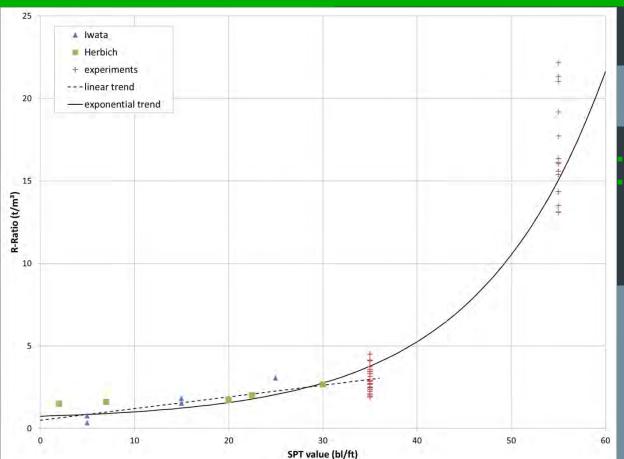

Variable weight


Pressure:

- Allows variable bucket "weights"
- Variation: range of R-values
- Pressure reading ~ cutting force

Tested in different soils:

- R-ratio in function of (known) SPT
- Also in harder soils



Results

DEME | Creating land for the future

Linear → exponential

Deviations:

- Soil
- Force of excavator