

Sydney Tar Ponds Remediation – Future Land Use and Sustainable Remediation

Sydney Tar Ponds, Sydney, Nova Scotia

Cape Breton Island

Sydney Steel Plant

1899 – begin construction

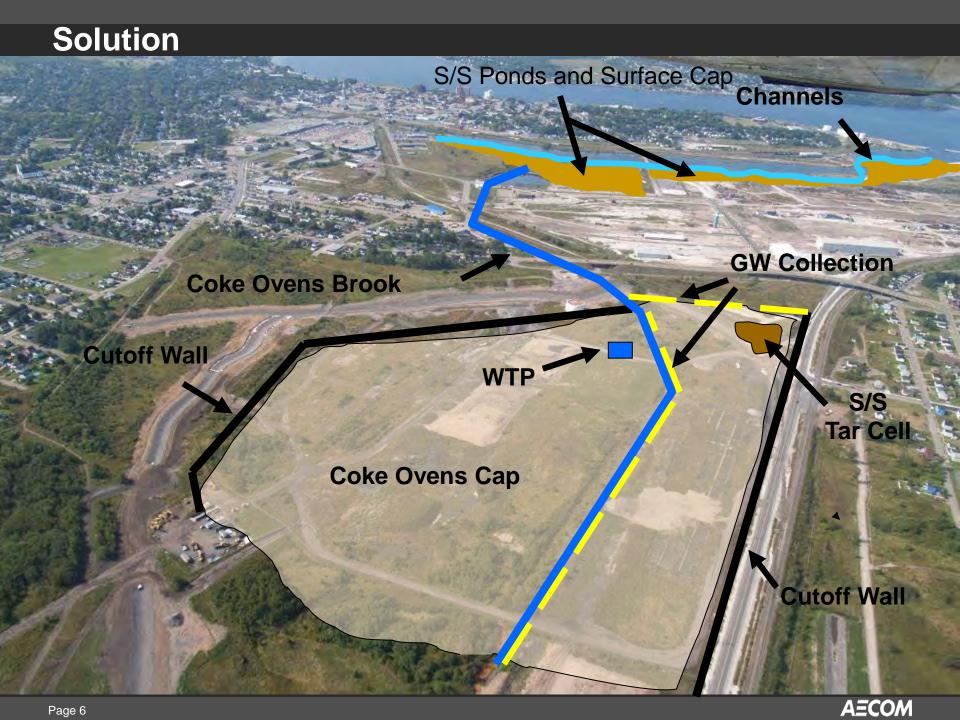
1901 - largest North American steel mill begins production

1912 – steel mill is producing half of the steel made in Canada

History of the Site

Employed ~ 6,000 workers at its peak.

Produced mainly rails; 1st global producer of shatter free rails.


Legacy Contaminated Site and Technology Selection

- 100 years of coking operations and steel making
- Tar Ponds: 81 acres and 750,000 tonnes of contaminated sediment
- Coke Ovens: 178 acres with soil, groundwater, and sediment contamination throughout

Project Schedule

- Detailed Design Started in October 2006
- Construction Commenced in 2008
- Construction Completion Scheduled for 2014 complete in 2013

Solidification / Stabilization

General S/S Approach

- Control incoming flows from Coke Oven/Wash Brook by diverting them around the work area
- Control water coming from other sources using barriers
- Create a new channel within the isolated areas
- Complete in situ treatment of tar ponds sediments through solidification/stabilization
- Cap S/S treated Sediments

Solidification and Stabilization Steps to Completion

- Characterization
- Design Criteria
 - Environmental
 - Future land use
 - GSR/LEB/fish enhancement
- Bench Scale Testing
- In Situ Pilot Scale Testing
 - Mix Optimization
- Tender
- Full Scale Construction

S/S Site-Specific Acceptance Criteria

Property	Test Method	Criteria
Strength (UCS)	ASTM D 1633 Method B	= or > 0.17MPa (25psi)
Hydraulic Conductivity	ASTM 5084 (Flex Wall)	< or = 1 x 10 ⁻⁶ cm/sec
Leachate	Modified SPLP 1312 (as monolithic structural integrity procedure)	Site Specific Leachate Criteria based on MCP GW 3 (ceiling values apply) and pre/post leachate comparison

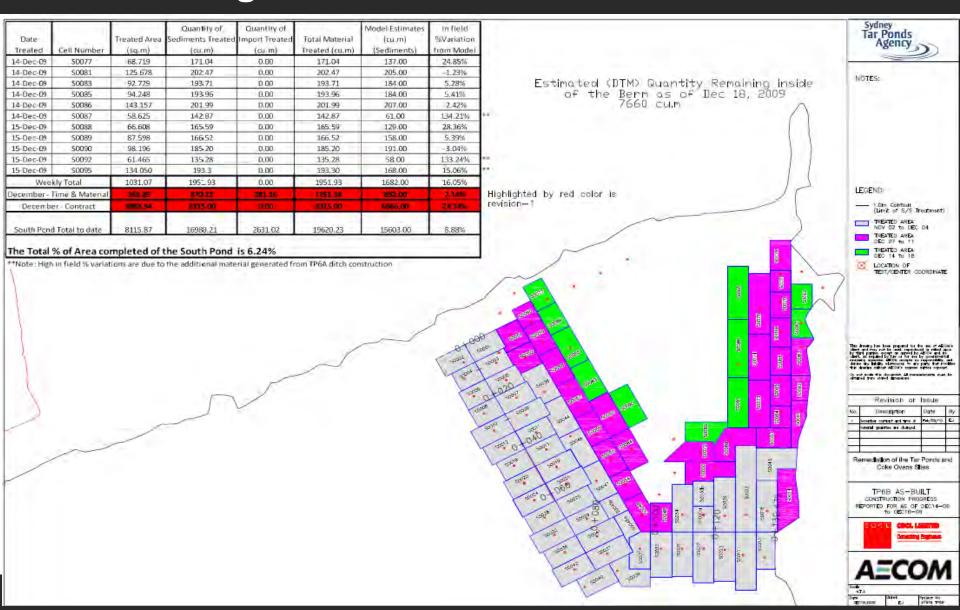
Water Control: Pumping Stations – Multiple Stages

Staged

Minimum Flow 0 L/second

Median Flow 400 L/second

Peak Flow 14,000 L/second


Water Control for Stabilization and Solidification

- Water Control by barriers, pumping, and local dewatering
- The dryer the contaminants, the less cement is used, thus lowering the overall costs.
- Too dry and it is too difficult to mix.

Data Management

Odour Management – A Significant Lesson Learned

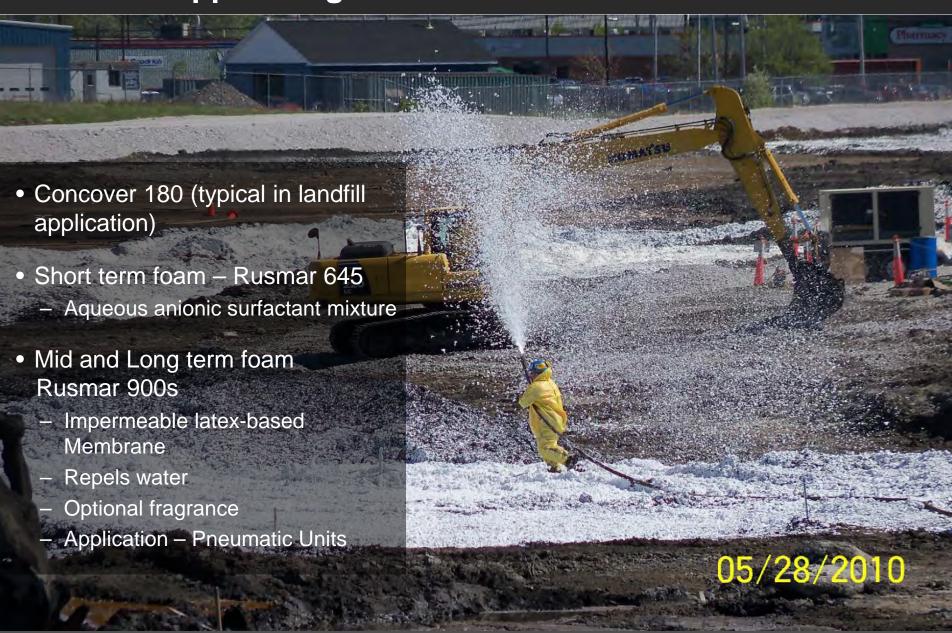
Odour Management Plan

Development of an Odour Management Plan

- Define Roles for Contractor,
 Design Engineer and Client
- Define Protocols
- Odour Complaint Hotline

Dedicated "Odour Champion"

- Respond to Work Activities
- Ensure Adequate Supply of OdourSuppressant Products


Odour Management Plan

- Reduce Area of Exposed Materials
- Dedicated Crew
- Acquire and Apply Control Products
- When, Where and What to Apply

Odour Suppressing Foam

Green and Sustainable Remediation

Future Land Use

- Recreation
 - Walking/cycling trails
 - Green Space
- Light Commercial
- Sydney "Common" Area

Future Land Use

Highlights of the Plan:

A Commons Area including:

- Sports fields
- Outdoor concert venue
- Walking trails
- Wildlife stations
- Parking area
- Urban forest

A Greenway Trail Network with:

- Bridges
- Boardwalks
- Interpretive stations
- Outdoor exercise stations
- Rest areas

New Roads and Sidewalks for:

- Community connectors
- Business campus
- Land banking for future growth
- Commercial expansion along SPAR road

Photos from: Ekistics Planning & Design "Former Tar Ponds Site Future Use" Sowing the Seeds of Change http://www.tarpondscleanup.ca/futureuse/

Local Economic Benefits

Underlying objectives:

- To ensure that economic benefits accrued to the greatest extent possible to Cape Breton
- To realize the sustainability imperative, i.e., that real economic value, beyond the remediation itself, would endure

Measures of success:

- Upwards of 50% of the monies have been spent in Cape Breton
- Through "set-aside" provisions, First Nations companies attained experience
 now successfully competing on the open market outstanding success
- Establishment of the Center for Sustainability in Energy and the Environment at Cape Breton University

Sustainability Model – Tar Ponds Project

Economy

Local Economic Benefits and Longterm Economic Growth of the Region

Environmental

Clean up of one of the most contaminated sites in Canada

Health benefits, longterm viability of Region

The Ponds Go Green

- Phase 1 and 2 complete with the final Pump Station in place
- Permanent channel to convey surface water through the site
- Grass begins to grow on the capped Tar Ponds site

August 2008

September 2013

10 Years is a Long Haul – Vision of the Finished Product

2005 Sediment Sampling

2013

The Best Playground in all of Cape Breton

The Final Phase Takes Shape

Public Land Use – People and Culture

Accomplishment Through Adaptation

2001 School Contest Vision of the Cleaned Up Tar Ponds

Future Site Use is Now Current Site Use

