Discrete element modeling of circular rock cutting

with evaluation of pore pressure effects

<u>ir. R.L.J. Helmons</u> Dr. ir. S.A. Miedema Prof. dr. ir. C. van Rhee

June 16th 2016

WODCON XXI: Innovations in Dredging

Agentschap NL Ministerie van Economische Zaken, Landbouw en Innovatie

1

Section Dredging Engineering

Delft University of Technology

Contents

- 1. Objectives
- 2. Physical phenomena
- 3. Modeling approach
- 4. Linear cutting
- 5. Rotational cutting
- 6. Conclusions

Objectives

Research for applications:

- Dredging at larger depths
- Deep sea mining
- Drilling (oil/gas industry)

Common interest:

Cutting of saturated rock in a high pressure environment

Objectives

To describe the physics of the cutting **process**, in which the focus is on:

- Influence of fluid pressure
- Validation and verification of numerical model

Eventually, this must lead to:

- Improvement of existing models
- Advices for design and workability

Physical phenomena

Cutting of rock is characterized by

Small cutting thickness (<mm)

- Indentation (crushed zone)
- Plastic flow

Large cutting thickness (mm-cm)

- Indentation (crushed zone)
- Shear crack
- Tensile crack

Image from Huang et al.¹

Physical phenomena

Failure during cutting covers the whole range of the Mohr envelope (macro failure)

Van Kesteren²

Physical Phenomena

Fluid pressure effects:

- Dilatant hardening
- Cataclastic failure
- Hydrostatic pressure/ cavitation

Strain rate

Physical phenomena

Failure during cutting covers the whole range of the Mohr envelope (macro failure)

Hypothesis: Water depth affects the cutting process

Discrete Element Method

Many particle simulation technique

- Equations of motion: $m_i \frac{d^2 \vec{r}}{dt^2} = \vec{f_i}$
- Contact bond model elastic perfect brittle
- Contact collision model Mohr friction model
- Currently in 2D

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

Modeling approach - Fluid

Influence fluid pressure

- Mass balance $\frac{\partial \zeta}{\partial t} + q_{i,i} = 0$
- Darcy flow
- Compressibility pore-fluid

$$\begin{aligned} \frac{\partial \zeta}{\partial t} + q_{i,i} &= 0\\ q_i &= -\frac{k}{\mu} \nabla p\\ p &= M(\zeta - \alpha \epsilon_v) \end{aligned}$$

Gives Poro-elasticity theory: $\frac{\partial p}{\partial t} - \frac{k}{\mu}M\nabla^2 p = -\alpha M \frac{\partial \epsilon_v}{\partial t}$

Note: Failure criteria of rock do **not** change, only stress state in/on the rock changes

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

Smoothed Particle

Meshless method

- Interpolation technique using kernel function
- $A(\vec{x}_i) = \sum_j A_j \frac{m_j}{\rho_j} W(\vec{x}_i \vec{x}_j, h)$

•
$$\nabla A(\vec{x}_i) = \sum_j A_j \frac{m_j}{\rho_j} \nabla W(\vec{x}_i - \vec{x}_j, h)$$

Used to solve fluid pressure

Coupling in DEM-SP

- Change of pore volume: Volumetric strain $\dot{\epsilon}_v = \nabla \cdot \vec{v}$
- Pressure gradient force $\vec{F} = -V_p \nabla p$

Rock (DEM)

$$\dot{\mathcal{E}}_{vol}$$
 Fluid (SP) $F \propto \nabla p$

07 July 2016

Linear cutting

Comparison of DEM-SP with experimental results of Alvarez Grima et al.³

- Range hydrostatic pressure: 1-180 bar
- Range cutting velocity: 0.02-2 m/s
- Limestone

Linear cutting: Simulation setup

Geometry H = 0.1 m W = 0.35 m $v_c = 1 \text{ m/s}$ $t_c = 0.02 \text{ m}$ $\alpha = 68 ^{\circ}$ $h_w = 0.2000 \text{ m}$

Material	Alvarez Grima et al	DEM-SP
σ_{UCS} [MPa]	7.92-10.64	9.89
σ_{BTS} [MPa]	0.86-1.15	1.47
<i>E</i> [GPa]	5.95-9.98	8.03
ν[-]	0.23-0.33	0.28

14

Linear cutting: Results Atmospheric vs hyperbaric (2km)

Damage: $\frac{\#_{broken\ bonds}}{\#_{initial\ bonds}}$

Slowed down by 50x

07 July 2016

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

Linear cutting: Results

Comparison experimental results from Alvarez Grima et al³

Circular cutting

Current engineering practice based on purely linear cutting tests, while in circular cutting (CSD):

- $t_c \neq \text{constant}$
- $v_c \neq$ parallel to rock bed
- $F_c \neq f(c_1 t_c)$

June 16th 2016

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

Circular cutting: Setup

June 16th 2016

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

0.000e+00 0.25 0.5 0.75 1.000e+00

Slowed down by 16x

June 16th 2016

- Three regimes
- 5% increase in required energy measured

June 16th 2016

WODCON XXI: Innovations in Dredging Discrete element modeling of circular rock cutting with evaluation of pore pressure effects <u>R.L.J Helmons</u>, S.A. Miedema, C. van Rhee

- Transition in wear mechanism
- Wear flat (1): significant influence on cutting force

June 16th 2016

June 16th 2016

Time averaged difference approx 10%

June 16th 2016

Conclusions

- Simulations correspond well with experiments
- Larger water depths lead to higher cutting forces
- Size of the crushed zone increases with water depth
- Transition in cutting modes: scratching, brittle and edge chipping
- Transition in wear mechanisms

Although still in 2D, the methodology is able to capture the relevant processes for simulation of rock cutting

Thank you for your attention

Subsidy program

Agentschap NL Ministerie van Economische Zaken, Landbouw en Innovatie

Industrial partners

For more info, see:

- 1. Helmons, R.L.J., Miedema, S.A., van Rhee, C. (2016). Simulating hydro mechanical effects in rock deformation by combination of the discrete element method and the smoothed particle method. *International Journal of Rock Mechanics and Mining Sciences 86, 224-234*
- 2. Helmons, R.L.J., Miedema, S.A., Alvarez Grima, M., van Rhee, C. Modeling fluid pressure effects when cutting saturated rock, *Engineering Geology*, **accepted**.

Or other my other publications on researchgate.net: Rudy Helmons

