APPLICATION OF LABORATORY AND MODELING TOOLS TO DESIGN THIN LAYER PLACEMENT PROJECTS FOR MARSH NOURISHMENT

Susan Bailey Zachary Tyler

Tim Welp

US Army Corps of Engineers Engineer Research and Development Center

DREDGING SUMMIT & EXPO '17

Vancouver, BC June 27, 2017

Engineer Research and **Development Center**

Outline

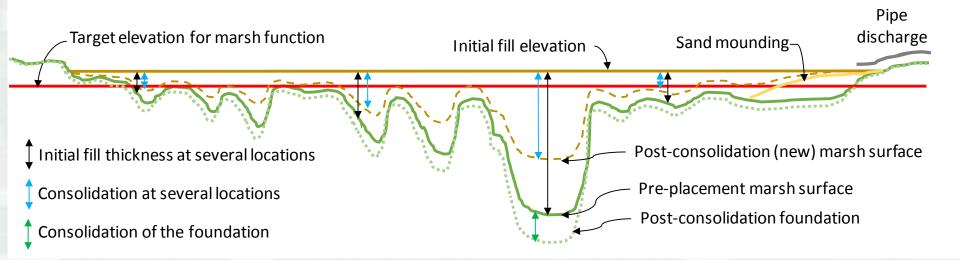
- Thin Layer Placement Background
- Laboratory tests and numerical models
- Project and modeling specifics
- Analysis and Results
- Ongoing and future R&D

Thin-Layer Placement

 Purposeful placement of thin layers of sediment (e.g., dredged material) in an environmentally acceptable manner to achieve a target elevation or thickness. Thin layer placement projects may include efforts to support infrastructure and/or create, maintain, enhance, or restore ecological function.

Inr

orld

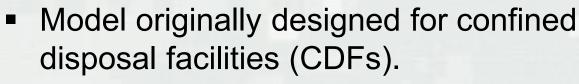

- Environmental enhancement objectives
 - Wetland (or marsh) nourishment
 - Counteract subsidence/sea level rise
 - Build "elevation capitol"
- Design of TLP operations
 - Need to know how much material to place in order to achieve target elevation
 - Understand dredged material behavior
 - Place as a slurry
 - Settling and Consolidation

DREDGI

BUILDING STRONG_®

Conceptual Marsh Topography Changes as a Result of DM Placement and Consolidation

- 1. Existing (pre-placement) marsh surface (solid green line)
- 2. Place DM slurry to initial fill elevation (solid tan line)
- 3. Over time, the DM consolidates (dotted tan line)
- 4. Original marsh surface also consolidates (dotted green line)



due to weight of placed DM

Predicting Dredged Material Initial Behavior

SETTLE

 Models initial behavior during placement & dewatering

Uses information from column settling test

BUILDING STRONG®

Sample

ports

Sediment

- water interface

Supernatant

Settled material

DREDGING SUMMIT & EXPO '17

Predicting Dredged Material and Substrate Long Term Behavior

PSDDF

Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill

- Models longer term consolidation
- Uses data from laboratory consolidation tests
 - Self weight
 - Standard oedometer

Models designed for CDFs.
Currently evaluating model optimization to account for wetland processes.

New Jersey

Marsh Restoration Areas

Areas within Edwin B. Forsythe National Wildlife Refuge considered for marsh restoration via TLP:

- Good Luck Point

Brick A

Atlantic Ocean

Brick B

- Brick A
- Brick B

Metadeconk River

Barnegat Bay

Good Luck Point

Toms River

4 Miles

Multiple New Jersey Dept. of Transportation channels near each area to be dredged for marsh placement

BUILDING STRONG®

DREDGING SUMMIT & EXPO '17

Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors

Dredged Material Evaluation

	Good Luck Point	Kettle Creek (Brick B)	Beaver Dam Creek (Brick A)
Salinity, ppt	21.05	20.24	22.42
Total Solids, g/L	615	393	432
Water Content, %	124	214	211
Organic Matter, %	5.4	13.4	24.0
Estimated Sp. Gr.	2.59	2.47	2.30
Grain size by volume			Believed
% Sand size	54.4	26.1	19.2 ^{be organ}
% Silt size	36	55.1	65.8
% Clay size	9.6	18.8	15
Atterberg Limits			
LL		127	264
PL		52	128
PI		75	136
USCS Classification	SM	MH	ОН

Column Settling Test

- 6 ft tall, 8-in diameter column
- Pour in DM slurry
- Record sediment-water interface over 15 days
- Sample supernatant for water quality data
- Use SETTLE model for data analysis

	Good Luck Point	Kettle Creek	Beaver Dam Creek
Zone Settling Rate, cm/hr	10.8	6.83	28.2
Compression settling curve coefficients* $C = A \left(\frac{DTime}{2}\right)^{B}$	A = 172.36 B = 0.1476	A = 210.97 B = 0.0935	A = 80.35 B = 0.1903

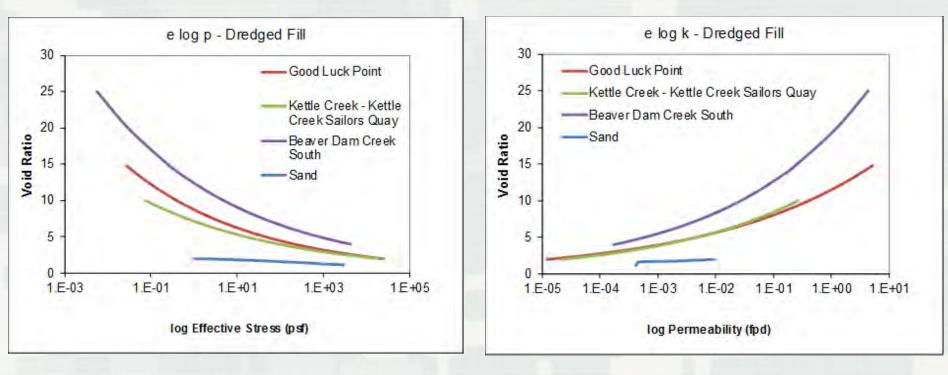
* C = concentration of fines at the end of placement (g/L), and DTIME = placement period (days)

BUILDING STRONG®

Information can be used to predict "bulking" (V_{final} / V_{in situ})

DREDGING SUMMIT & EXPO '17

Innovative solutions for a safer, better world


ERDC

Kettle Creek and Good Luck Point – completed column settling tests

Laboratory Consolidation Tests

 Generated from self-weight and standard oedometer consolidation tests

Serdc

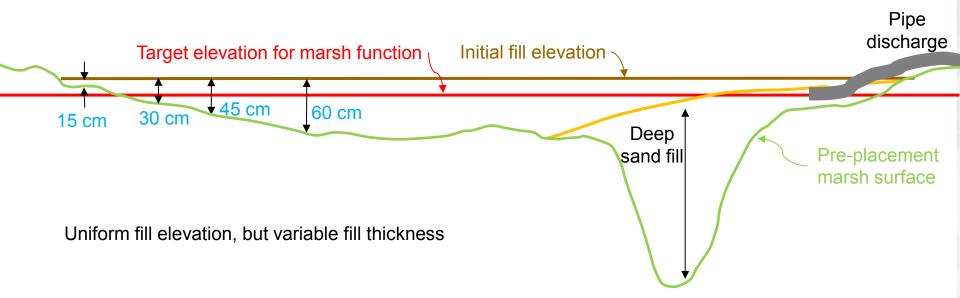
BUILDING STRONG_®

DREDGING SUMMIT & EXPO '17

Site Conditions and Target Elevations

	Existing	Elevation, ft	Target Low	Target High Marsh Elevation, ft	
	Average	Lowest	Marsh Elevation, ft		
Good Luck Point	0.21	-0.7	0.62		
Brick A - w/o ponds	-2.5 0.11	-14.3 -0.4	0.44	0.77	
Brick B	0.26	-0.9	0.33	0.66	

BUILDING STRONG®

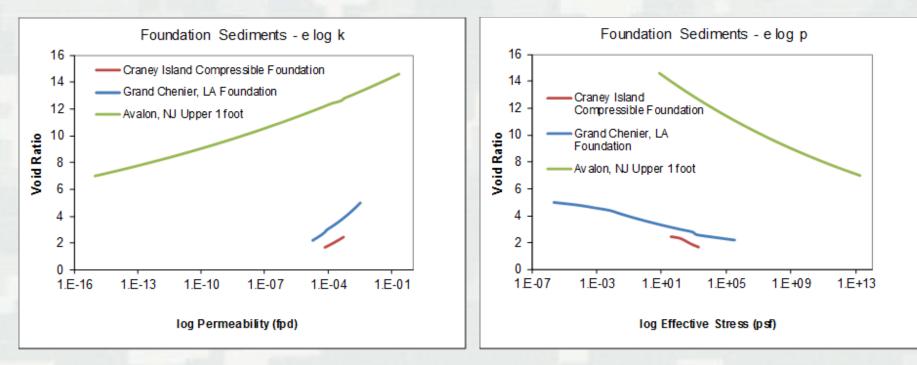

DREDGING SUMMIT & EXPO '17

Modeling Scenarios

Fines

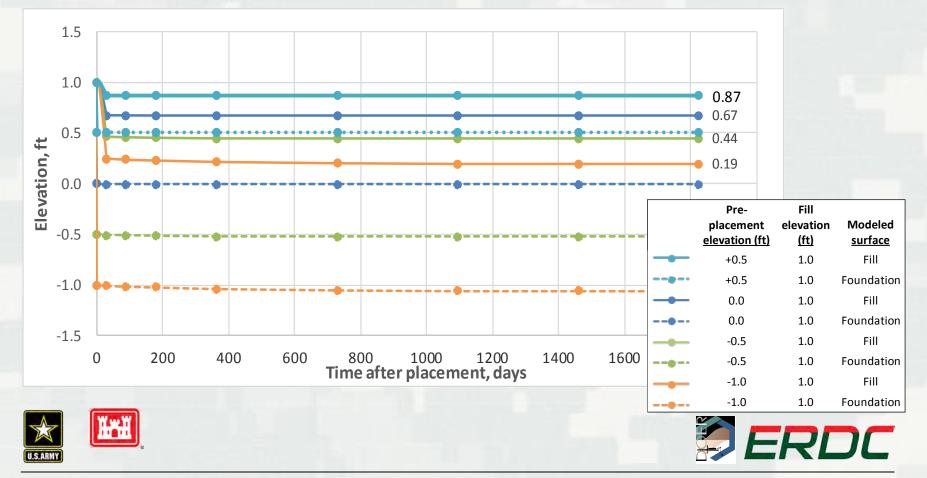
 One fill elevation, but four fill thicknesses 15 cm – 60 cm (0.5 ft – 2 ft)

- Sand
 - 1.5 m and 4.2 m (5 ft and 14 ft) fill thicknesses (deep ponds in Brick A)


Modeling – Output from SETTLE

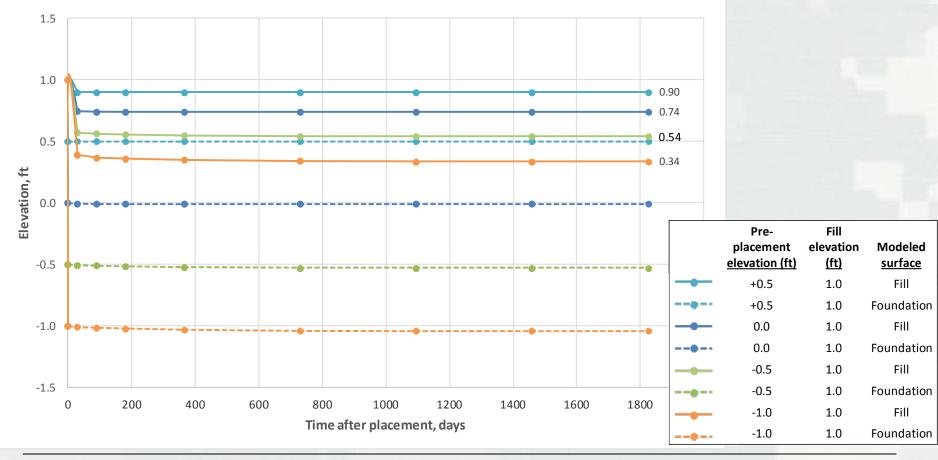
	Units	Good Luck Point	Brick B	Brick A
Estimated volume to fill to 30 cm elevation	m ³	14,783	64,496	104,362
In situ dredging volume required	m ³	4,893	30,582	36,469
Void ratio of fines at end of placement	v/v	11.964	8.064	16.868
Percent of volume occupied by sand	%	14.9	6.6	0.5

Foundation Consolidation


Foundation sediment was not sampled. Used several surrogate consolidation curves to evaluate potential compression of the foundation material.

BUILDING STRONG

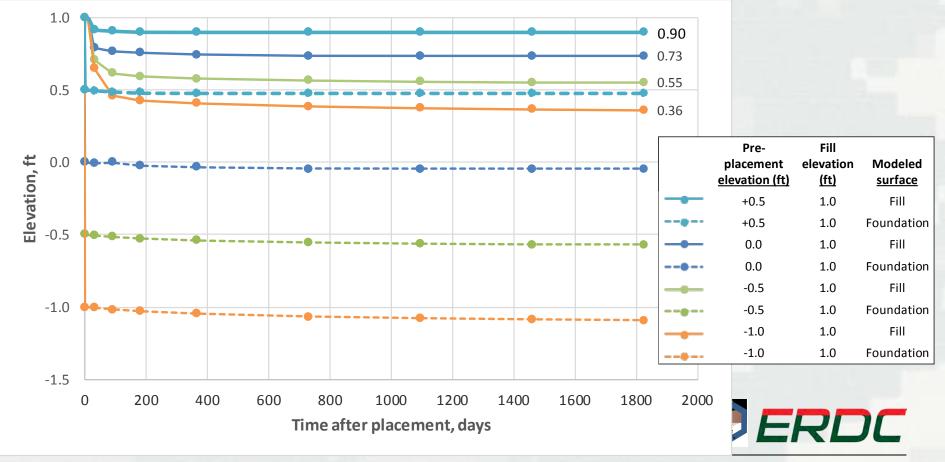
Results – Fines Consolidation


 Good Luck Point - material placed to +30 cm elevation (dotted lines = compressible foundation)

DREDGING SUMMIT & EXPO '17

Results – Fines Consolidation

 Brick A – Beaver Dam Creek material placed to +30 cm elevation (dotted lines = compressible foundation)



BUILDING STRONG®

DREDGING SUMMIT & EXPO '17

Results – Fines Consolidation

 Brick B –Kettle Creek material placed to +30 cm elevation (dotted lines = compressible foundation)

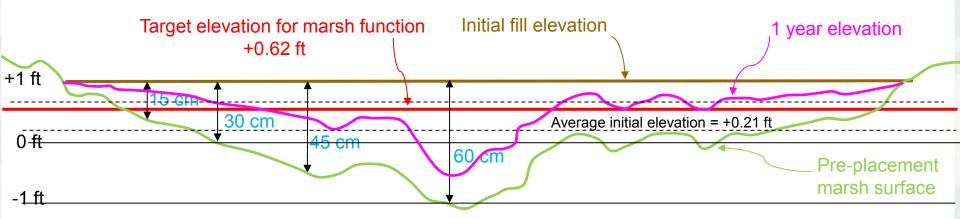
DREDGING SUMMIT & EXPO '17

BUILDING STRONG®

Results - Fines

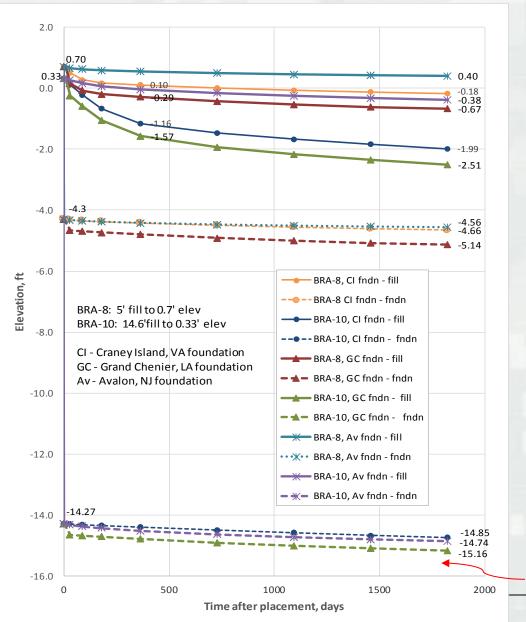
	Existing Elevation, ft		Target Low Target High Marsh Marsh		Elevation 1 year post-placement (ft)				
		Elevation, ft	Average pre- placement 	-1.0 ft pre-	-0.5 ft pre-	0.0 ft pre-	+0.5 ft pre-		
Good Luck Point	0.21	-0.7	0.	.62	0.75	0.21	0.45	0.67	0.87
Brick A (BDC) - w/o ponds	-2.5 0.11	-14.3 -0.4	0.44	0.77	0.78	0.35	0.55	0.74	0.90
Brick B	0.26	-0.9	0.33	0.66	0.80	0.41	0.58	0.74	0.90

Areas at the average elevation (at all 3 sites) will be above the target elevation if DM is placed to +1.0 ft. Thus, most of the site will be too high.


- It is not possible to achieve the target elevation across the entire site due to the variable topography.
- If the goal is to achieve the target elevation for the average site condition, then a lower fill elevation is needed.
- Additional modeling should be performed.

BUILDING STRONG®

Illustration of Results – Good Luck Point


Not drawn to scale...

	Pre-placement elevation	Average (+0.21 ft)	-1.0 ft	-0.5 ft	0.0 ft	+0.5 ft	
	1 year elevation	0.75	0.21	0.45	0.67	0.87	
							ERDC

BUILDING STRONG_®

DREDGING SUMMIT & EXPO '17

Results – Sand Consolidation

3 Compressible foundation materials modeled for each pond:

- Craney Island, VA (CI)
- Grand Chenier, LA (GC)
- Avalon, NJ (Av)

Pond in BRA-8

- Initial elevation -4.3 ft
- Fill to target elevation +0.7
 - Foundation consolidated 0.26 0.84 ft (after 5 years)

Pond in BRA-10

- Initial elevation -14.27 ft
- Fill to target elevation +0.33
- Foundation consolidated 0.58 0.89 ft (after 5 years)

Note these curves have not flattened out, thus additional consolidation is expected to occur beyond 5 years

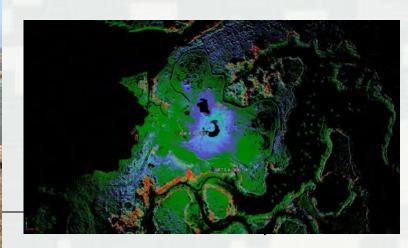
Innovative solutions for a safer, better world

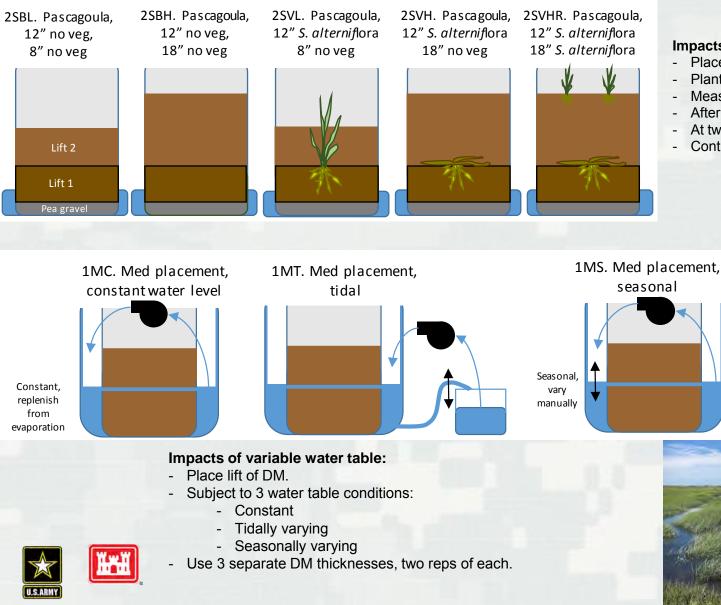
Note: previous results for fines were modeled using Craney Island foundation

Analysis Conclusions

- Fill to +30 cm was too high to achieve target elevations (for both high and low marsh target elevations)
 - Need to avoid high elevations that allow invasives (*Phragmites australis*) to establish
 - Additional modeling could be done to optimize the fill elevations to reach target elevation across majority of the site.
- Consolidation behavior variable between the different materials
- Use of surrogate consolidation curves for foundation provided a range of possible compression of the existing marsh foundation
- Longer term modeling could be done to determine the extent of consolidation beyond 5 years.
- Application of the model to design for thin layer placement was demonstrated. However, research is being conducted to optimize use of the models for wetland processes.

R&D Aspects


BUILDING STRONG®



Lab study setup

BUILDING STRONG®

Impacts of vegetation:

- Place lift of DM.
- Plant 3 of the containers.
- Measure consolidation over time.
- After plants mature, add another lift
- At two lift thicknesses. Replant one.
- Continue to measure consolidation.

Innovative sol

QUESTIONS?

Innovative solutions for a safer, better world

BUILDING STRONG_®