

INTRODUCTION

Investments in Dredging Works (Federal Government resources)

FIRST STEP – NEW METHODOLOGY

Mixing concepts of 3 different cost calculation references

RICHARD NICK BRAY

"Dredging: a handbook for engineers" Chapter 10

CIRIA

"A guide to cost standards for dredging equipment 2009".

SICRO

The official federal system that provides a cost standard for budgets of infrastructure works.

NEW METHODOLOGY

Reliable cost calculation methodology

Subject to Brazilian Federal Government Rules Accountable to the Government Accountability
Office (GAO)

NEW METHODOLOGY

Innovation 4

- > Calculates and includes the silted volume in the work
- > Mobilization and demobilization distance
- Includes costs regarding crew assistance and logistics support
- > Useful tools to support the public agent

NEW METHODOLOGY

Concept of Activity Based Costing

EXTRACTION

OF THE

SEDIMENT

ACTIVITY

MOBILIZATION

OPERATION

TRIP TO THE

DISPOSAL

AREA

DISCHA RGE

OF THE

MATERIAL

TRIP FROM THE DISPOSAL AREA **DEMOBILIZATION**

RESOURCE

dredging equipment	dredging equipment	dredging equipment
manpower	manpower	manpower
crew assistance	crew assistance	crew assistance
logistics support	logistics support	logistics support

SECOND STEP – SYSTEMATIZATION

System Objectives

GUARANTEE A STANDARD

Simulation of budgets

Standardization

GUARANTEE THE ACCURACY OF THE RESULTS

Reliable sources

Transparency

Technical basis

SERVE AS A DECISION MAKING SUPPORT TOOL

Analytical budget

Maximize efficiency

Sensitivity analysis

Analytical Budget

	MOBILIZATION	OPERATION			DEMOBILIZA- TION	UNPRODUCTIVE HOURS	TOTAL	%	
RESOURCES		EXTRACTION OF THE SEDIMENT	TRIP TO THE DISPOSAL AREA	DISCHARGE OF THE SEDIMENT	TRIP FROM THE DISPOSAL AREA			R\$ 99.946	5.547
EQUIPMENTS	R\$ 1.265.964	R\$ 15.336.715	R\$ 21.314.121	R\$ 2.043.414	R\$ 21.314.121	R\$ 1.265.964	R\$ 8.779.624	R\$ 71.319.925	91,0%
OPERATION	525.016	R\$ 7.987.594	R\$ 10.170.758	R\$ 573.590	R\$ 10.170.758	R\$ 525.016	R\$ 1.003.206	R\$ 30.955.938	39,5%
MAINTENANCE	R\$ 326.633	R\$ 4.173.110	R\$ 6.327.624	R\$ 834.622	R\$ 6.327.624	R\$ 326.633	R\$ 4.415.745	R\$ 22.731.991	29,0%
DEPRECIATION	R\$ 122.942	R\$ 942.437	R\$ 1.429.003	R\$ 188.487	R\$ 1.429.003	R\$ 122.942	R\$ 997.232	R\$ 5.232.046	6,7%
RETURN ON CAPITAL	R\$ 199.166	R\$ 1.526.748	R\$ 2.314.984	R\$ 305.350	R\$ 2.314.984	R\$ 199.166	R\$ 1.615.516	R\$ 8.475.915	10,8%
INSURANCE	R\$ 92.207	R\$ 706.828	R\$ 1.071.752	R\$ 141.366	R\$ 1.071.752	R\$ 92.207	R\$ 747.924	R\$ 3.924.035	5,0%
MANPOWER	R\$ 113.345	R\$ 911.348	R\$ 1.381.864	R\$ 182.270	R\$ 1.381.864	R\$ 113.345	R\$ 964.337	R\$ 5.048.373	6,4%
CREW ASSISTANCE	R\$ 35.850	R\$ 274.815	R\$ 416.698	R\$ 54.963	R\$ 416.698	R\$ 35.850	R\$ 290.793	R\$ 1.525.666	1,9%
LOGISTICS SUPPORT	R\$ 15.988	R\$ 90.072	R\$ 136.575	R\$ 18.014	R\$ 136.575	R\$ 15.988	R\$ 95.309	R\$ 508.520	0,6%
TOTAL	R\$ 1.431.148	R\$ 16.612.950	R\$ 23.249.257	R\$ 2.298.661	R\$ 23.249.257	R\$ 1.431.148	R\$ 10.130.063	R\$ 78.402	2.485
%	1,8%	21,2%	29,7%	2,9%	29,7%	1,8%	12,9%	R\$ 21.544	.062

Maximum Efficiency (Hopper dredges)

Maximum Efficiency (Backhoe dredges)

BACKHOE'S DATABASE

Backhoe A

Backhoe B

Backhoe C

Backhoe D

Backhoe E

Backhoe F

Backhoe G

Backhoe H

Backhoe I

BARGES DATABASE

Barge 1

Barge 2

Barge 3

Barge 4

Barge 5

Barge 6

Barge 7

Barge 8

Barge 9

Best combinations – fit inputs and minimize downtime

Sensitivity Analysis

INPUT	UNIT	ORIGINAL VALUE	NEW VALUE	RESULTS
Speed to the disposal area	Knots	10.0	10.0	
Speed from the disposal area	Knots	12.0	12.0	ORIGINAL GLOBAL PRICE
Loading factor of the bucket	%	90%	90%	
Loading factor of the barge	%	85%	85%	U\$ 49,500,200
Loading factor of the Hopper	%	80%	80%	
Bulking factor	%	15%	15%	NEW GLOBAL PRICE
Distance to the disposal area	Nautical miles	8.5	9.5	
Euro exchange	R\$	3.58	3.58	U\$ 52,018,061
Dollar Exchange	R\$	3.32	3.32	
Fuel price	R\$ / liter	2.45	2.45	VARIATION
Maintenance factor	%	0.0345%	0.0345%	
Unproductive hours	%	20%	20%	5.09%
Engine capacity factor	%	63%	63%	

Sensitivity Analysis – average impact of 15 dredging works

INPUT	VARIATION	VARIATION IN THE GLOBAL COST
speed	1 knot	7.0%
Distance to the disposal area	1 nautical mile	5.0%
Maintenance factor	1 percentage point in annual factor	1.9%
Engine capacity factor	1 percentage point in each factor	1.2%
Loading factor	1 percentage point in the index	1.1%
Indirect costs, taxes and profit	1 percentage point in the final value	0.8%
Bulking factor	1 percentage point in the index	0.8%
Unproductive hours	1 percentage point in the index	0.7%
Euro exchange	1% in the unit cost	0.5%
Fuel price	1% in the unit cost	0.4%

Sensitivity Analysis - highly complex inputs

INPUT	VARIATION	VARIATION IN THE GLOBAL PRICE	SOURCE
speed	1 knot	7.0%	public agent
Distance to the disposal area	1 nautical mile	5.0%	project
maintenance	1 percentage point in annual factor	1.9%	methodology
Engine capacity factor	1 percentage point in each factor	1.2%	methodology
Loading factor	1 percentage point in the index	1.1%	public agent
Indirect costs, taxes and profit	1 percentage point in the final value	0.8%	Government
Bulking factor	1 percentage point in the index	0.8%	public agent
Unproductive hours	1 percentage point in the index	0.7%	methodology
Euro exchange	1% in the unit cost	0.5%	Brazilian Central Bank
Fuel price	1% in the unit cost	0.4%	Petrobras

HIGHLY COMPLEX INPUTS

Loading Factor - Bucket

HIGHLY COMPLEX INPUTS

Loading Factor - Barge

Average impact in the global price – 1.1%

THIRD STEP – DATABASE

New Challenge - improve accuracy of the inputs

IMPROVE THE ACCURACY

Speed

Loading factor

Bulking factor

Unproductive hours

DEVELOP A DATABASE AND FEED IT WITH DATA FROM DREDGING WORKS

Travel time to the disposal area

Travel time from the disposal area

Number of cycles per area

Number of unproductive hours per work

THIRD STEP – DATABASE

Development of a data base to feed dredging works data

CONCLUSIONS

- > Importance of dredging works to Brazilian economy
- > New system provides more reliability in establishing fair prices
- > Support tools provide useful and relevant information
- > A reliable methodology is not enough to ensure the accuracy (database for highly complex inputs)
- > Complexity of the system demands constant feeding and updating (legislation, methodology, technology, database)

