

MORE EFFICIENT DIESEL ELECTRIC POWER PLANT FOR DREDGES

Authors:

Vinton Bossert, P.E.
President, Bossert Dredge
Consulting, LLC,
vintonbossert@comcast.net

John Ockerman President, Ockerman Automation Consultants, LLC, john@ock-inc.com

Vassili Rozine, P.E. VP Engineering, I & M Engineering vassilir@IMEngGroup.com

- History of Electric Power for Marine Propulsion
- Resurgence of Marine Direct Current (DC) Systems
- Comparison of Traditional AC Diesel Electric to New DC Diesel Electric
- Efficiency Improvements
- Operational & Maintenance Improvements
- Cost Considerations
- Summary & Conclusions

History

Development of Marine Electrical Propulsion

- 1 1956 Thyristor Enable Reliable AC → DC
- 1960 1980 Many Dredges Used AC Gens with DC Prop & Pump Motors via SCR
- 3 1980 DC Motors Declined for AC Motors via VFD
- 4 2010 AC Gens → DC SWBD → AC Motors

Technological Factors For The Resurgence Of Marine DC Propulsion and Distribution Power

Technological Factors For The Resurgence Of Marine DC Propulsion and Distribution Power

AC Rotating Machines and VFDs are Very Reliable and Efficient

Technological Factors For The Resurgence Of Marine DC Propulsion and Distribution Power

- AC Rotating Machines and VFDs are Very Reliable and Efficient
- Development of Variable Speed Diesel Generators

Technological Factors For The Resurgence Of Marine DC Propulsion and Distribution Power

- AC Rotating Machines and VFDs are Very Reliable and Efficient
- Development of Variable Speed Diesel Generators
- Development of High Current DC Fault Current Protection

Traditional AC DE vs

Comparison Objectives

Combined potential for 20% in fuel savings

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.
- Improved reliability and reduction of single point failures within the system.

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.
- Improved reliability and reduction of single point failures within the system.
- Better quality power

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.
- Improved reliability and reduction of single point failures within the system.
- Better quality power
- Improved efficiency of power due to EMS and ESS

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.
- Improved reliability and reduction of single point failures within the system.
- Better quality power
- Improved efficiency of power due to EMS and ESS
- Less space and weight

- Combined potential for 20% in fuel savings
- Improved life cycle cost by reduced fuel consumption and maintenance intervals.
- Improved reliability and reduction of single point failures within the system.
- Better quality power
- Improved efficiency of power due to EMS and ESS
- Less space and weight
- Less machinery noise and vibration

Power Plant Comparison Ockerman

Traditional AC DE Plant

Length Overall	103 m
Breadth	21 m
Hopper Capacity	5500 m^3
Cruising Speed	12.5 kn

Main Generators	4 @ 2250 kw
Propulsion Motors	2 @ 1800 kw
Dredge Pump	1 @ 2000 kw
Jetting Pump	2 @ 1000 kw
Bow Thruster	1 @ 600 kw
Dragarm Winches	3 @ 150 kw

Traditional AC DE Plant One-Line Diagram

Power Plant Comparison Ockerman

DC Link Hybrid DE Plant

Length Overall	103 m
Breadth	21 m
Hopper Capacity	5500 m^3
Cruising Speed	12.5 kn
Main Generators	2 @ 2000 kw

Propulsion Diesels w/CPP
PTI/PTO Gens
Dredge Pump
Jetting Pump
Bow Thruster
Dragarm Winches

2	<u>@</u>	3000 kw
2	<u>@</u>	1700 kw
1	<u>@</u>	2000 kw
2	<u>@</u>	1000 kw
1	<u>@</u>	600 kw
3	<u>@</u>	150 kw

DC Link Hybrid DE Plant

DC Link Hybrid DE Plant One-Line Diagram

Operational Improvements

Ockerman Automation

- Combines synergies not available in traditional AC propulsion systems.
 - Variable speed engines,
 - DC link Multidrive
 - ☐ Energy Storage System (ESS)

	Combines synergies not available in traditional AC propulsion systems.
	□ Variable speed engines,
	□ DC link Multidrive
	☐ Energy Storage System (ESS)
>	AC Systems are inefficient with regards to maintenance, energy consumption, and emissions
	Conventional AC systems engines operate isochronous with enough reserve capacity online to absorb load steps
	☐ Dynamic response of an AC System is characteristically slow

Operational Improvements

Combines synergies not available in traditional AC propulsion systems.
□ Variable speed engines,
□ DC link Multidrive
□ Energy Storage System (ESS)
AC Systems are inefficient with regards to maintenance, energy consumption, and emissions
 Conventional AC systems engines operate isochronous with enough reserve capacity online to absorb load steps
Dynamic response of an AC System is characteristically slow
A DC link with ESS & EMS:
Enhances the overall availability of the system
Adapts to quickly changing operational requirements
Reduces energy consumption and emissions

How Does a Dredge Measure Efficiency?

How Does a Dredge Measure Efficiency?

- Least First Cost
- Least Maintenance Cost
- Most Efficient Hull
- Most Efficient Propulsion System
- Most Efficient Pumping System
- Crew Size Matched to Automation

- Least First Cost
- Least Maintenance Cost
- Most Efficient Hull
- Most Efficient Propulsion System
- Most Efficient Pumping System
- Crew Size Matched to Automation

- Largest Hopper
- Most Maneuverable
- Highest Density Excavation
- Most Efficient Hopper Loading (least overflow losses)
- Fastest Loaded Speed to Disposal Site
- Fastest Unloading
- Fastest Speed Returning Empty

- Least First Cost
- Least Maintenance Cost
- Most Efficient Hull
- Most Efficient Propulsion System
- Most Efficient Pumping System
- Crew Size Matched to Automation

- Largest Hopper
- Most Maneuverable
- Highest Density Excavation
- Most Efficient Hopper Loading (least overflow losses)
- Fastest Loaded Speed to Disposal Site
- Fastest Unloading
- Fastest Speed Returning Empty

Fuel Savings for Variable Speed Generators

Fuel Savings for Variable Speed Generators

Additional Advantages to Variable Speed Generation

Additional Advantages to Variable Speed Generation

 Reduced fuel consumption by 20% to 40% for partial load operations.

- Reduced fuel consumption by 20% to 40% for partial load operations.
- Cleaner combustion process with less "Wet Stacking" at low load conditions

- Reduced fuel consumption by 20% to 40% for partial load operations.
- Cleaner combustion process with less "Wet Stacking" at low load conditions
- Reduced GHG emissions

- Reduced fuel consumption by 20% to 40% for partial load operations.
- Cleaner combustion process with less "Wet Stacking" at low load conditions
- Reduced GHG emissions
- Potential for reduced noise pollution (~5 dB)

- Reduced fuel consumption by 20% to 40% for partial load operations.
- Cleaner combustion process with less "Wet Stacking" at low load conditions
- Reduced GHG emissions
- Potential for reduced noise pollution (~5 dB)
- Reduction in maintenance costs (up to 30%)

Space Savings for DC Link Hybrid Systems

Fewer large transformers compared to traditional solution.

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low managed by island converter(s) fed by DC link.

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low - managed by island converter(s) fed by DC link.
- Multi drive eliminates need for a rectifier on every motor drive system - a more compact arrangement with common DC bus.

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low - managed by island converter(s) fed by DC link.
- Multi drive eliminates need for a rectifier on every motor drive system - a more compact arrangement with common DC bus.
- The DC switchgear is water cooled (higher energy density).

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low - managed by island converter(s) fed by DC link.
- Multi drive eliminates need for a rectifier on every motor drive system - a more compact arrangement with common DC bus.
- The DC switchgear is water cooled (higher energy density).
- Fewer AC Switchboard components and circuit breakers are required.

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low - managed by island converter(s) fed by DC link.
- Multi drive eliminates need for a rectifier on every motor drive system - a more compact arrangement with common DC bus.
- The DC switchgear is water cooled (higher energy density).
- Fewer AC Switchboard components and circuit breakers are required.
- Energy Storage System (ESS) can be easily integrated.

- Fewer large transformers compared to traditional solution.
- Fewer filters -Harmonic distortion on the ship service AC supply are low managed by island converter(s) fed by DC link.
- Multi drive eliminates need for a rectifier on every motor drive system - a more compact arrangement with common DC bus.
- The DC switchgear is water cooled (higher energy density).
- Fewer AC Switchboard components and circuit breakers are required.
- Energy Storage System (ESS) can be easily integrated.
- Renewable energy sources such as hydro, solar and wind can be easily integrated with shore side ESS for fast charge.

Energy Storage Systems (ESS)

ES Systems take several forms:

- Battery banks
- Capacitor banks
- Flywheel

Energy Storage Systems (ESS)

ES Systems take several forms:

- Battery banks
- Capacitor banks
- Flywheel

Why Add ESS:

- Agile
- Instantaneous Power
- Cost

ESS with an Energy Management System (EMS)

ESS with an Energy Management System (EMS)

 Spinning reserve - Provides backup for running engines when a loss of propulsion could be a major risk to the vessel.

ESS with an Energy Management System (EMS)

Spinning reserve - Provides backup for running engines when a loss of propulsion could be a major risk to the vessel.

- <u>Bridging or UPS</u> - Similar to "spinning reserve" but the ESS is utilized to "bridge" and provide enough peak torque instantaneously as a ridethrough function until enough generator power is available.

ESS with an Energy Management System (EMS)

Spinning reserve - Provides backup for running engines when a loss of propulsion could be a major risk to the vessel.

- <u>Bridging or UPS</u> - Similar to "spinning reserve" but the ESS is utilized to "bridge" and provide enough peak torque instantaneously as a ridethrough function until enough generator power is available.

 Peak Shaving or Load Leveling - Load leveling offsets the need to start additional engines for high transitional loads.

ESS with an Energy Management System (EMS)

 Spinning reserve - Provides backup for running engines when a loss of propulsion could be a major risk to the vessel.

- <u>Bridging or UPS</u> - Similar to "spinning reserve" but the ESS is utilized to "bridge" and provide enough peak torque instantaneously as a ridethrough function until enough generator power is available.

Peak Shaving or Load Leveling - Load leveling offsets the need to start additional engines for high transitional loads.

 Strategic Loading Control of ESS – Automatically control ESS charge and discharge cycles so diesels are optimally loaded. Energy is produced at the lowest cost.

ESS with an Energy Management System (EMS)

Spinning reserve - Provides backup for running engines when a loss of propulsion could be a major risk to the vessel.

- <u>Bridging or UPS</u> - Similar to "spinning reserve" but the ESS is utilized to "bridge" and provide enough peak torque instantaneously as a ridethrough function until enough generator power is available.

 Peak Shaving or Load Leveling - Load leveling offsets the need to start additional engines for high transitional loads.

 Strategic Loading Control of ESS – Automatically control ESS charge and discharge cycles so diesels are optimally loaded. Energy is produced at the lowest cost.

Zero Emissions operation – Propulsion plant runs entirely on ESS.
 Vessel operates with low noise emissions, zero fuel consumption, zero
 Co2 and zero NOx emissions.

O&M Savings for DC Link Hybrid Systems

Less Downtime

- Less Downtime
- All Rotating Machines are AC

- Less Downtime
- All Rotating Machines are AC
- Variable Speed Generators

- Less Downtime
- All Rotating Machines are AC
- Variable Speed Generators
- Less Repairs of Power Electronic Building Blocks (PEBB)
 - All loads use multiples of same IGBT Bridges
 - Crew becomes adept at troubleshooting
 - Inventories are less
 - Human error is reduced in accomplishing repairs
 - Life cycle of PEBB are increased from 12 years to 16-20 yrs

Fault Current Protection for DC Link Hybrid Systems

Fault Current Protection for DC Link Hybrid Systems

 Until Recently Fault Current Coordination for High Amperage was Difficult in DC Systems

Fault Current Protection for DC Link Hybrid Systems

- Until Recently Fault Current Coordination for High Amperage was Difficult in DC Systems
- Siemens, Alstom, and ABB have developed Regulatory Approved DC Circuit Interrupters for High Voltage, High Current DC Circuits

Fault Current Protection for DC Link Hybrid Systems

- Until Recently Fault Current Coordination for High Amperage was Difficult in DC Systems
- Siemens, Alstom, and ABB have developed Regulatory Approved DC Circuit Interrupters for High Voltage, High Current DC Circuits
- Solid-state converter components and topology will manage and clear serious fault conditions quickly and predictably.

Cost Considerations

Capital Expenditure

AC Diesel-Electric	<u>Hybrid DC Diesel-Electric</u>
AC Distribution with VFDs	DC Distribution with multi-drives
Electric driven Azimuthing Z-	Med Speed Propulsion Diesel, CPP,
Drive Propulsion	Flapped Rudders, & PTO Gen
Fixed Speed 1800 RPM	Variable Speed Generators (2 shaft
Generators	gen, 2 high speed)
Strong Potential for Harmonic	Potential for ES and Regenerative
Filters	Load Reduction

Cap Ex for both designs are practically equivalent

Cost Considerations

Operating Costs

- No Direct Comparison
 - Several Siemens and ABB DC Installations Overseas
 - Less than 6 in North America
- Fuel Savings 10 20%
- Reliability Up, Downtime Less
- Less Maintenance
- Improved efficiency of power due to EMS and ESS
- Better quality power

Intangible Operating Cost Savings

- Less space and weight
- Less machinery noise and vibration

Summary & Conclusions

- Excellent Functional & Operational Benefits for DC Link Hybrid Applied to Dredges
- Several Similar Plants Built to Date
 - Many Designs Commissioned Now
- Cap Ex Equivalent to AC DE
- Op Ex Significant Savings Compared to AC DE

DISCUSSION/QUESTIONS?

Contact Information:

Vinton Bossert, P.E.

President, Bossert Dredge Consulting, LLC 39 Cornwall Drive, Newark, DE 19711, USA T: (302) 740-1841, Email: vintonbossert@comcast.net

John Ockerman

President, Ockerman Automation Consultants, LLC 916 8th St, Anacortes, WA 98221, USA T: (360) 293-0206, Email: john@ock-inc.com

Vassili Rozine, P.E.

VP Engineering, I & M Engineering 1004 Rochester Ave, Coquitlam, BC V3K 2W7, Canada T: (604) 931-4403, Email: vassilir@IMEngGroup.com