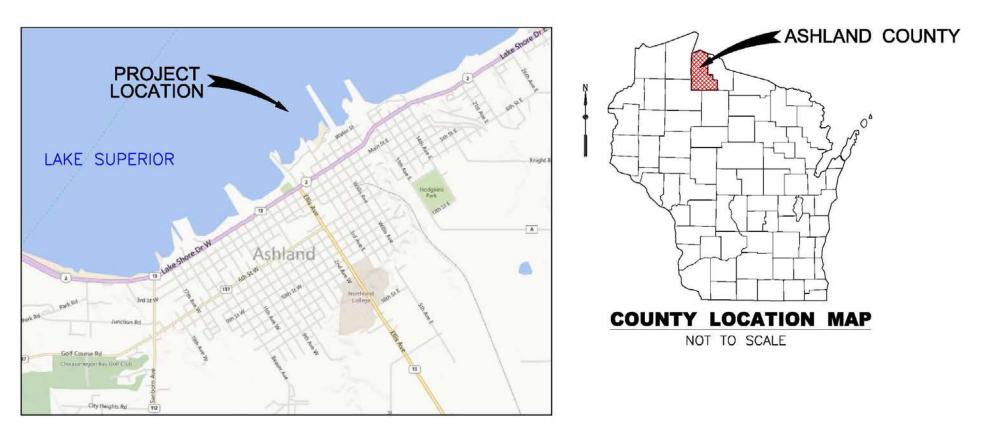
Application of Alum to Improve Post-Dredging Water Quality at the Ashland/NSP Superfund Site Pilot Project

Steve Garbaciak, Rich Onderko, Denis Roznowski, Sharon Kozicki, Mark Ciardelli, Rob Brillhart, Jill Morris, John Wisher, and Ken Aukerman (Foth); Brian Bell (Envirocon); Tyler Lee (JF Brennan)



Overview of site and pilot project
In situ water treatment options
Bench tests
Column tests
Field application

Superfund Site Location

SITE LOCATION MAP

Ashland/NSP Lakefront Superfund

Site

Phase 1

Phase 2

Phase 1 (2013-2014) - Source Control

Excavation: 90,000 tons
Thermal Desorption: 70,000 tons
Offsite Disposal: 20,000 tons
Met All Soil Cleanup Standards

05/21/2015 08:07



Phase 2 – Waterway Cleanup

Breakwater Construction 2016 Pilot Project 2017-2018 Full Scale Project

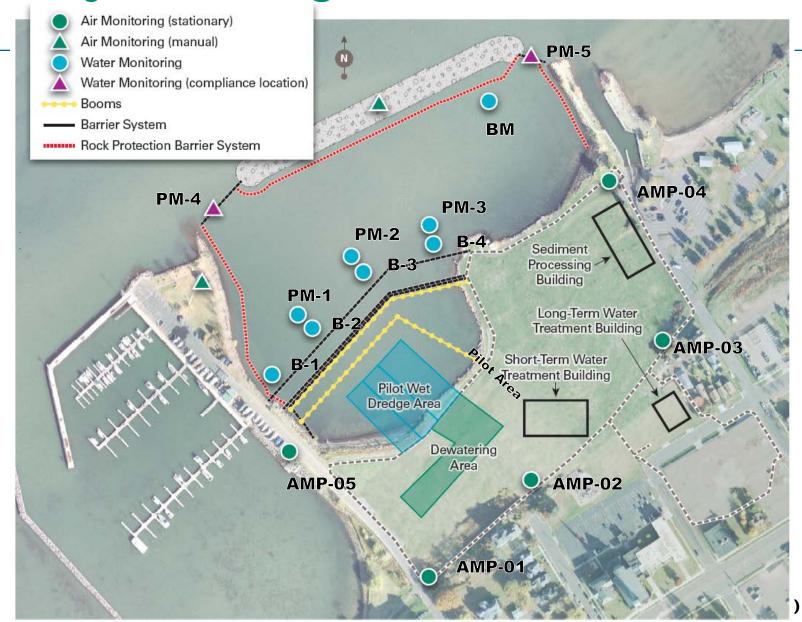


Breakwater Construction

Phase 2 - Pilot Project (2016)

Pilot Project Objectives

Targeted Sediment Removal
 Pilot Study Dredge Area


- Successfully Demonstration of Dredging Technology
 - Sediment Standards
 - Water Quality Standards
 - ROD Requirements

Pilot Project Objectives

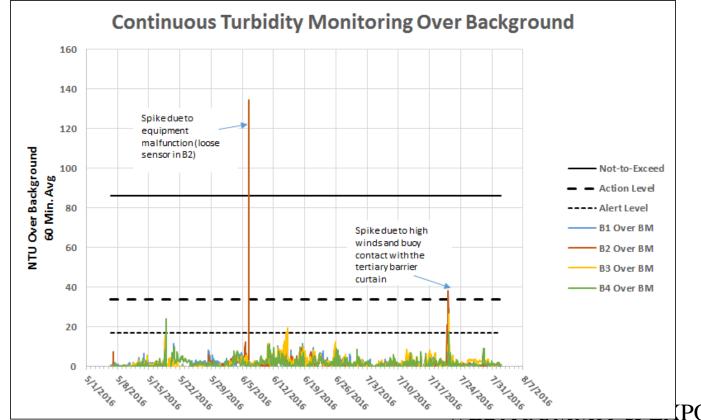
	Amolute	Project Water Quality	
	Analyte	Standard (µg/L)	
	1,2,4-Trimethylbenzene	12.3	
	1,3,5-Trimethylbenzene	12.3	
-	Benzene	0.34	
	Ethylbenzene	14	
	Toluene		
	m+p,xylene		
	Xylenes (Total)	27	
	1-Methylnaphthalene	433	
	2-Methylnaphthalene	24.3	
	Acenaphthene	38	
	Acenaphthylene		
	Anthracene	0.035	
	Fluorene		
	Naphthalene	6.2	
	Phenanthrene	3.6	
	Benzo[a]anthracene	0.025	
	Benzo[a]pyrene	0.003	
	Benzo[b]fluoranthene	0.003	
	Benzo[e]pyrene		
	Benzo[g,h,i]perylene	7.64	
	Benzo[k]fluoranthene	0.14	
	Chrysene	0.07	
	Dibenzo[a,h]anthracene	0.003	
	Dibenzofuran ^a		Foth
	Fluoranthene	1.9	
	Indeno[1,2,3-c,d]-pyrene	0.03) '18 cleengineering

Project Design Overview

Pilot Project Overview - Summary of Work Completed

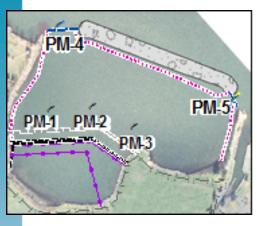
- 40,000 square foot Pilot Study Dredge Area
- 8,000 cubic yards Removed
- 520 truckloads to Sub-Title D Landfill
- 12,000 tons of Woody/Concrete Debris and Sediments
- 4 million gallons Water Treated
- 9.5 ppm tPAH SWAC achieved

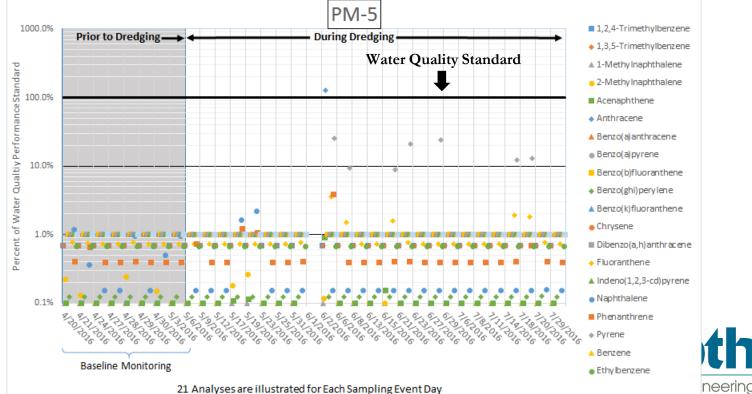
Summary of Monitoring Effort



Turbidity Results

No Results over Action Levels


Thousands of water samples measured



Monitoring Results – Surface Water COCs

 Over 1,300 monitoring analyses at PM-4 and PM-5, one result for one constituent above compliance value - within range of baseline conditions:

Need for treatment

- Surface water quality standards must be met prior to demobilizing silt curtains
- Clay and silt particles drove high turbidity
- Impending winter conditions limited available settling time

In situ water quality treatment options

Literature search, vendor calls

- Pond and lake treatment
- Active dredging treatments
- Carriage water slurry and sediment treatment
- Oil spill remediation
- Ex-situ water treatment
- No directly comparable projects found

In situ water quality treatment options (cont.)

- Options identified
 - Chopped hay, cottonseed meal, manure, Moringa oleifera seeds, walnut shells
 - Powdered/granular organic carbon
 - Organoclay
 - Gypsum
 - Alum
 - Cationic/anionic polymer

GAC, PAC, GOC, POC settleability

GOC settling velocity too high (100x)

Material	Settle Time (second)	Liquid Depth (feet)	Settling Velocity (feet/second)
GAC	326	1.14	0.0035
PAC	720	1.14	0.0016
GOC	5	1.14	0.23
POC	1,800	1.14	0.00063


1.5 L jar tests

- GAC, PAC and POC alone from 100 to 1,600 mg/L
- Alum at 25, 50 and 100 ppm
- PAC + Alum
- POC + Alum
- Simultaneous and delayed additions

Analyte	Result (µg/L)
1,2,4-Trimethylbenzene	<0.17
1,3,5-Trimethylbenzene	<0.17
Benzene	<0.20
Ethylbenzene	<0.19
Toluene	<0.17
Xylene, m & p	<0.38
Xylenes (Total)	<0.58
1-Methylnaphthalene	<0.048
2-Methylnaphthalene	<0.048
Acenaphthene	0.2
Acenaphthylene	0.19
Anthracene	<0.048
Benzo(a)anthracene	0.52
Benzo(a)pyrene	0.53
Benzo(b)fluoranthene	0.51
Benzo(e) pyrene	0.47
Benzo(g,h,i)perylene	0.43
Benzo(k)fluoranthene	0.27
Chrysene	0.47
Dibenzo(a,h)anthracene	<0.024
Dibenzofuran	<0.019
Fluoranthene	1.0
Fluorene	<0.048
Indeno(1,2,3-cd)pyrene	0.35
Naphthalene	<0.048
Phenanthrene	<0.048
Pyrene	0.86
Turbidity (NTU)	95.1

GAC reduced COCs 11 to >93%

- PAC reduced COCs 40 to >95% (above 800 mg/L dose)
- POC reduced COCs <10% at doses up to 1,200 mg/L
- POC reduced COCs >76% at 1,600 mg/L dose
- Alum alone reduced COCs >95% at 25-50 ppm dose

Column settling tests

New sample of dredge area water collected

Similar characteristics to bench scale test sample

Column settling tests

- 8-foot columns filled with 68 liters of water
- Tested additions of:
 - PAC
 - PAC + delayed alum
- Sampled every 0.5 feet for TSS and at surface plus mid-depth for COCs
- Samples collected at time zero, 0.5, 1, 3, 24, 48, 168 hours
- Climate controlled lab ~ 10 °C

Column settling tests

- Baseline test showed turbidity reduction of 54% over 168 hours (TSS reduced 89%)
- Baseline test showed COC reductions up to 83% in 72 hours and 88% over 168 hours
- PAC reduced all POCs to below project standards after 48 hours except benzo(k)fluoranthene and all ND at 168 hours
- PAC + delayed alum reduced all COCs below project standards after 24 hours

 Jar tests at conclusion of dredging ▶ 10, 20, 30, 40 mg/L Alum dose 30 mg/L optimal Alum applied with standard herbicide field sprayer and 100 gallon tank over 8 hours

Project Team

LATHAM & WATKINS LLP

Joint Venture

www.foth.com

