SEE INSIDE YOUR PROCESS

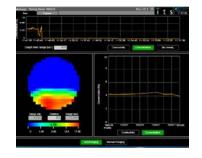
DENSE-ITOMETER

REAL TIME PRODUCTION EFFICIENCY BASED ON MEASUREMENT OF FLOW PROFILE & VELOCITY

Kent Wei, Changhua Qiu, Ken Primrose and Wadoud Hazineh WEDA 27th June 2018

www.itoms.com

PROCESS TOMOGRAPHY - A NEW MEASUREMENT METHODOLOGY



Combines measurements from distributed sensors to determine internal conditions

www.itoms.com

MOTIVATION TO REPLACE NUCLEAR SOURCE

Operational benefits

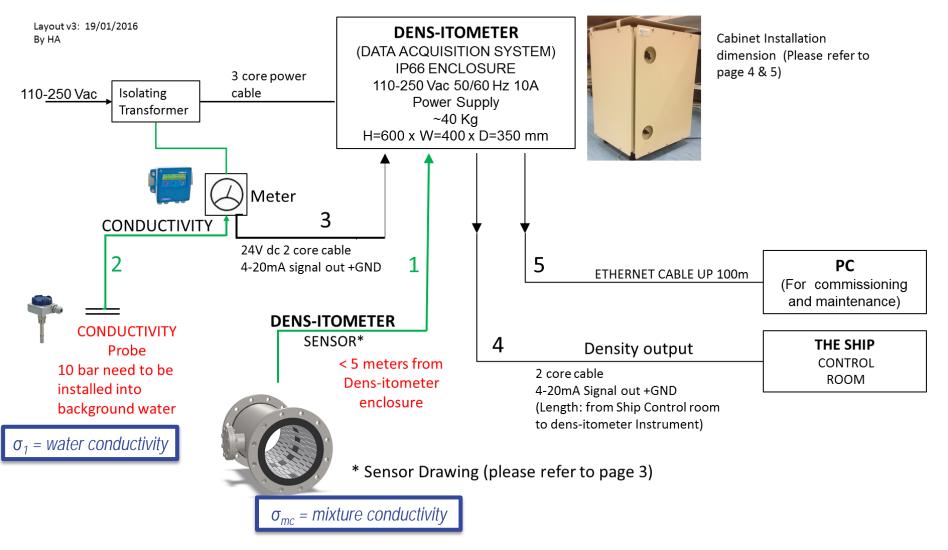
- Lower cost maintenance
- Eliminates local compliance rules, regulations
- Simpler transport and installation
- Reduced whole life cost
- Additional information

CSR (Corporate responsibility and risk) benefits

- Sustainable no nuclear source in operations
- No remainder disposal
- Eliminates risk
- Simplifies working procedures

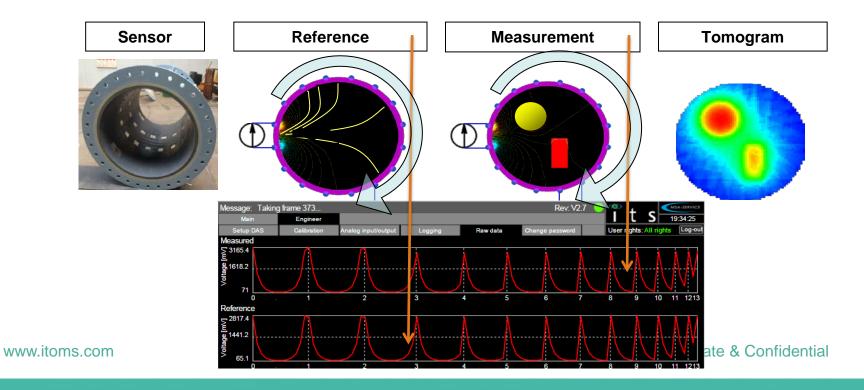
PRODUCT HISTORY

Seven year development program with leading dredging company Installed on four vessels and tested round world Sensor durability demonstrated at flow rates > 30,000 tonnes / hr Agreed roll out program in dredging fleet ITS working with all major EU dredgers


www.itoms.com

SIGNIFICANT COST SAVING - COMPARISON 800MM SENSOR

Significant savings, particularly for larger sensors


Cost Benefit Comparison (20-year life)	Cost Nuclear		Total (nuclear)	Cost ITS Densitometer
Initial Instrument Cost	\$30,000	1	\$30,000	\$62,000
Supplemental sources	\$25,000	2	\$50,000	\$-
Maintenance over 20 year period	\$1,200	20	\$24,000	\$45,000
Source registration (2 territories / year)	\$4,800	20	\$96,000	\$-
Transport & disposal	\$4,800	3	\$14,400	\$1,000
Total			\$214,400	<mark>\$108,000</mark>

STANDARD INSTALLATION LAYOUT

MEASUREMENT PRINCIPLE

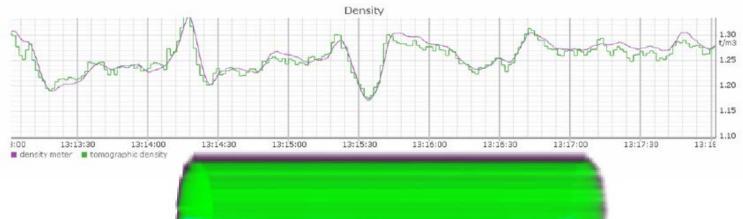
- Conductivity scan across electrode array
- Compare to reference
- Algorithm to map conductivity
- Conductivity map produces solids concentration

DENSITY CALCULATION

Determine % non-conductive solids with Maxwell equation:

$$\alpha = \frac{2\sigma_1 + \sigma_2 - 2\sigma_{mc} - \frac{\sigma_{mc}\sigma_2}{\sigma_1}}{\sigma_{mc} - \frac{\sigma_2}{\sigma_1}\sigma_{mc} + 2(\sigma_1 - \sigma_2)} \qquad For solid / liquid system \\ simplifies to \\ \alpha_1 = water conductivity \\ \sigma_{mc} = mixture conductivity \\ \alpha = volume concentration \\ \alpha^* [specific gravity] = density \\ \end{cases}$$


VOLUME CALCULATION


Determine % non-conductive solids with Maxwell equation:

$$\alpha = \frac{2\sigma_1 + \sigma_2 - 2\sigma_{mc} - \frac{\sigma_{mc}\sigma_2}{\sigma_1}}{\sigma_{mc} - \frac{\sigma_2}{\sigma_1}\sigma_{mc} + 2(\sigma_1 - \sigma_2)} \qquad For solid / liquid system simplifies to
$$\alpha = \frac{2\sigma_1 - 2\sigma_{mc}}{\sigma_{mc} + 2\sigma_1}$$
$$\sigma = water conductivity$$
$$\sigma = water conductivity$$
$$\alpha = water conductivity$$
$$\alpha = volume concentration$$
$$\alpha * [specific gravity] = density$$$$

www.itoms.com

SYSTEM PERFORMANCE

www.itoms.com

System performance

Long term trials shown

- 97% agreement to gamma
- 98% agreement with Coriolis
- 99% agreement with displacement measurement

Independent of flow conditions

Measures 360° - full volume

Easy to calibrate in-line

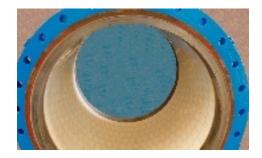
Orientation

- Vertical
- Inclined
- Horizontal

INSTALLATIONS

INTEGRATED PRODUCTION METER

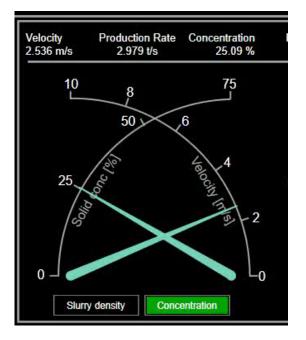
Every gamma meter paired with flow meter

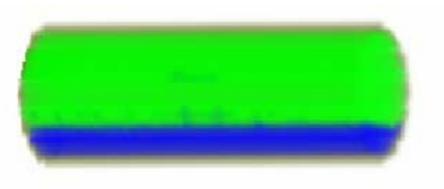

Most dredgers use mag flow

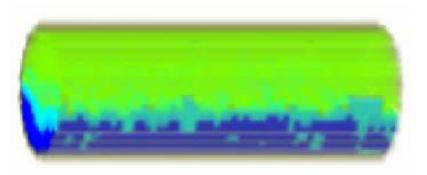
Similar measurement principle

- Electrically insulated pipe
- Measure voltage across electrode pair

Combined sensor


- Less tiles
- Less flanges
- Shorter
- Same measurement point


STANDARD PRODUCTION OUTPUT



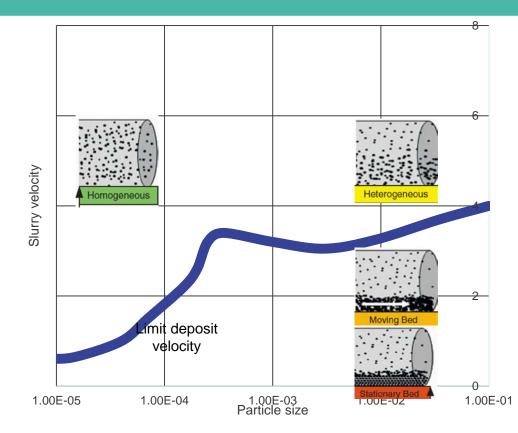
ADDITIONAL INFORMATION ON FLOW

- Sand median density 350 micron, up to 30% solids
- ø 150mm
- 1.5m/s

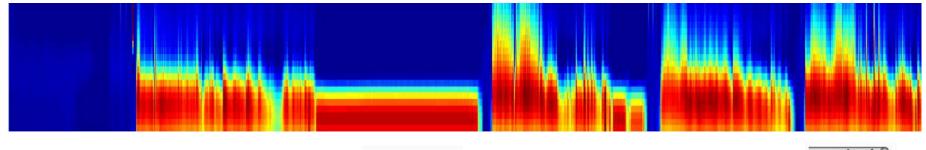
- Sand median density 350 micron
- ø 150mm
- 6 m/s

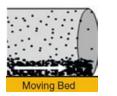
ADDITIONAL INFORMATION ON FLOW

Fuel represents 30% of dredge cost

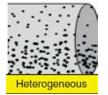

Flow regime balances

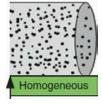
- Blockages / poor production
- Over-pumping
 - Excessive fuel cost
 - Excessive wear

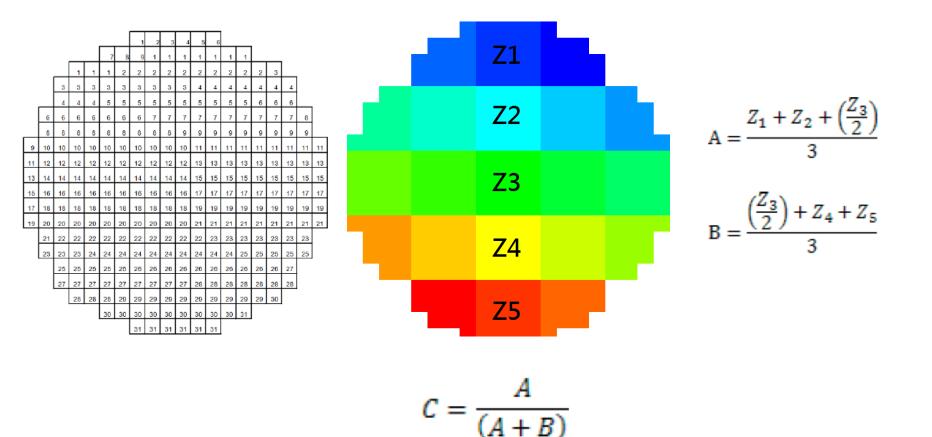

Traditionally based on


- particle size distribution (sampling)
- Limit deposition velocity


Better to use real time measurement...

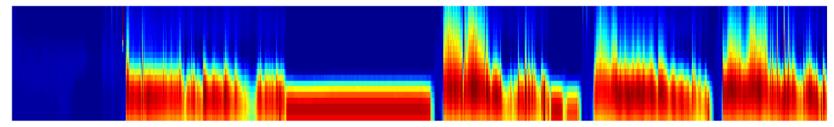



DISPLAY AS 2D – TIME SERIES

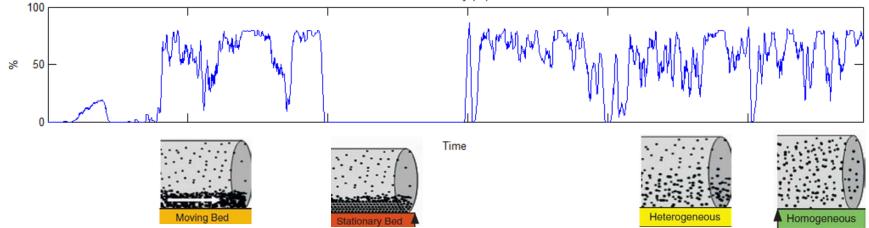


www.itoms.com

PATTERN RECOGNITION FOR FLOW REGIME (HORIZONTAL)

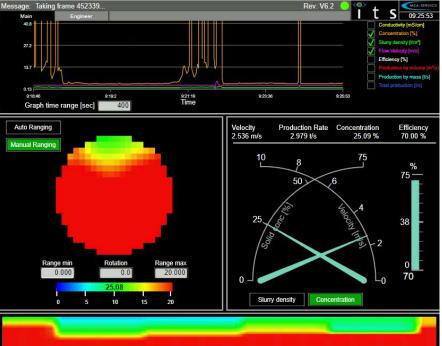


Flow condition	C range		Other measurements		Efficiency
	Min	Max	stdev [C]	% solids	
Stationary bed	0	0.55	< 0.05	> 5%	10%
Low conc. suspension	0.505	0.52	> 0.05	< 5%	20-40%
Moving bed	0	0.55	> 0.05	> 5%	40-60%
Homogenous	0.495	0.505	> 0.05	> 5%	40-60%
Heterogenous	0.52	0.55	> 0.05	> 5%	60-100%


Vertical / inclined flows require more complex efficiency model

RELATED "EFFICIENCY CO-EFFICIENT"

Solid Distribution



Efficiency (%)

FULL USER INTERFACE

ACKNOWLEDGEMENTS

Technology Strategy Board (Innovate Grant #132793)

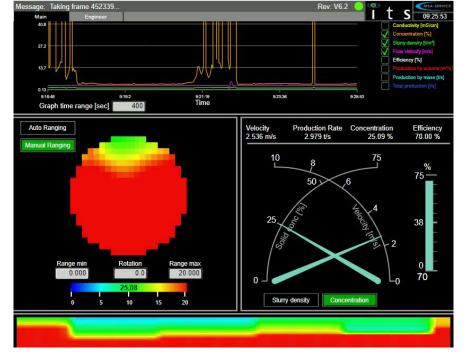
University of Delft (2014)

Colleagues at ITS

Input from dredging community

CONCLUSIONS

Dens-itometer


- CSR and \$USD benefits
- Established processing power
 - Additional information

Integrated with magflow meter

- More compact
- Lower cost
- Integrated system

Real-time flow regime information

- Captured by tomogram
- Described through algorithm
- Additional cost savings and performance optimisation
- "% efficiency" metric needs testing, discussion and refinement

www.itoms.com

SEE INSIDE YOUR PROCESS

DENSE-ITOMETER

REAL TIME PRODUCTION EFFICIENCY BASED ON MEASUREMENT OF FLOW PROFILE & VELOCITY

Kent Wei, Changhua Qiu, Ken Primrose and Wadoud Hazineh WEDA 27th June 2018

www.itoms.com