DHLLDV Framework Sliding Flow Transport

Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology Associate Professor of Dredging Engineering

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

Delft University of Technology

Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering **Delft University of Technology – Offshore & Dredging Engineering**

Dredging A Way Of Life

© S.A.M

Delft University of Technology Offshore & Dredging Engineering

Offshore A Way Of Life

What is Offshore & Dredging Engineering?

Offshore & Dredging Engineering covers everything at sea that does not have the purpose of transporting goods & people and no fishery.

FUDER Delft University of Technology Offshore & Dredging Engineering

Research Question

In slurry transport several flow regimes are distinguished. The fixed or stationary bed regime, the sliding bed regime, the heterogeneous flow regime, the homogeneous flow regime and the sliding flow regime or fully stratified flow. These flow regimes each have their own physics. For the first 4 flow regimes many fundamental or empirical analytical models exist, however for the sliding flow regime or fully stratified flow there is only a simple criterion, the particle diameter should be larger than about 0.015 times the pipe diameter (Wilson & Sellgren). No good explanation is given for this criterion, nor a good definition is given.

Here a possible solution to this is given.

Introduction

Delft University of Technology – Offshore & Dredging Engineering

Delft

Data from Yagi et al., C_{vs}

TUDEIft Delft University of Technology Offshore & Dredging Engineering

DHLLDV Model, The Solids Effect

Data from Yagi et al., C_{vs}

Delft University of Technology – Offshore & Dredging Engineering

Sliding Flow Regime Chapter 7.7 & 8.8

TUDEIft Delft University of Technology Offshore & Dredging Engineering

Delft University of Technology – Offshore & Dredging Engineering

Flow Regimes

Delft University of Technology Offshore & Dredging Engineering

Delft University of Technology – Offshore & Dredging Engineering

Verification & Validation, Durand

Durand, Condolios & Gibert (1952-1960)

Delft University of Technology – Offshore & Dredging Engineering

Verification & Validation, Boothroyde

Boothroyde et al. (1979)

Delft University of Technology – Offshore & Dredging Engineering

Verification & Validation, Wiedenroth

Wiedenroth (1967)

Verification & Validation, All

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Phenomena

If the particle diameter to pipe diameter ratio is larger than about 0.015, the particles will not be suspended anymore, but stay in a fast flowing sort of bed, behaving according to a sliding bed.

For $0.0075 < d/D_p < 0.03$ there is a transition from heterogeneous behavior to sliding flow behavior.

Above $d/D_p=0.03$ sliding flow is fully mobilized.

Delft University of Technology Offshore & Dredging Engineering The higher the line speed the smaller the concentration of the flowing particles at the bottom of the pipe.

Definitions

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology

Offshore & Dredging Engineering

Equilibrium of Forces

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

 $\boxed{1}$

Derivation d/D_p Factor 1

Deposition = Suspension Criterion: $v_t = u_*(bed)$

Equilibrium of forces on layer above the sliding bed $F_{12,l} + F_{1,l} = \Delta p \cdot A_1$

$$\rho_{l} \cdot \mathbf{u}_{*}^{2} \cdot \mathbf{D}_{p} \cdot \sin(\beta) \cdot \Delta \mathbf{L} + \alpha_{\tau} \cdot \rho_{l} \cdot \mathbf{u}_{*}^{2} \cdot \mathbf{D}_{p} \cdot (\pi - \beta) \cdot \Delta \mathbf{L}$$

$$= \Delta \mathbf{p} \cdot \mathbf{A}_{p} \cdot (1 - \mathbf{C}_{vr})$$

$$\Delta \mathbf{p} = \frac{\rho_{l} \cdot \mathbf{u}_{*}^{2} \cdot \mathbf{D}_{p} \cdot \Delta \mathbf{L} \cdot (\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta))}{\mathbf{A}_{p} \cdot (1 - \mathbf{C}_{vr})}$$

Derivation d/D_p Factor 2

Equilibrium of forces the bed $F_{12,l} + \Delta p \cdot A_2 = F_{2,sf} + F_{2,l}$ $F_{2,l} = small and is neglected here$

$$D_{l} \cdot u_{*}^{2} \cdot D_{p} \cdot sin(\beta) \cdot \Delta L + \Delta p \cdot A_{p} \cdot C_{vr} = \mu_{sf} \cdot (\rho_{s} - \rho_{l}) \cdot g \cdot A_{p} \cdot C_{vs} \cdot \Delta L$$

$$\rho_{l} \cdot u_{*}^{2} \cdot D_{p} \cdot \sin(\beta) + \frac{\rho_{l} \cdot u_{*}^{2} \cdot D_{p} \cdot (\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta))}{(1 - C_{vr})} \cdot C_{vr}$$

$$= \mu_{sf} \cdot (\rho_s - \rho_l) \cdot g \cdot A_p \cdot C_{vs}$$

Delft University of Technology Offshore & Dredging Engineering

$$\frac{\rho_{l} \cdot u_{*}^{2} \cdot D_{p} \cdot \left(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot C_{vr}\right)}{\left(1 - C_{vr}\right)} = \mu_{sf} \cdot \left(\rho_{s} - \rho_{l}\right) \cdot g \cdot A_{p} \cdot C_{vs}$$

Delft University of Technology Offshore & Dredging Engineering

Derivation d/D_p Factor 3

Equilibrium of forces the bed

$$\frac{\rho_{l} \cdot u_{*}^{2} \cdot D_{p} \cdot \left(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot C_{vr}\right)}{\left(1 - C_{vr}\right)} = \mu_{sf} \cdot \left(\rho_{s} - \rho_{l}\right) \cdot g \cdot A_{p} \cdot C_{vs}$$

$$\mathbf{u}_{*}^{2} = \frac{\mu_{sf} \cdot (\rho_{s} - \rho_{l}) \cdot \mathbf{g} \cdot \mathbf{A}_{p} \cdot \mathbf{C}_{vb} \cdot \mathbf{C}_{vr} \cdot (1 - \mathbf{C}_{vr})}{\rho_{l} \cdot \mathbf{D}_{p} \cdot (\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot \mathbf{C}_{vr})}$$

$$\mathbf{u}_{*}^{2} = \frac{\pi}{4} \cdot \frac{\mu_{sf} \cdot \mathbf{R}_{sd} \cdot \mathbf{g} \cdot \mathbf{D}_{p} \cdot \mathbf{C}_{vb} \cdot \mathbf{C}_{vr} \cdot (1 - \mathbf{C}_{vr})}{\left(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot \mathbf{C}_{vr}\right)}$$

Delft University of Technology – Offshore & Dredging Engineering

Offshore & Dredging Engineering

Derivation d/D_p Factor 4

Friction velocity squared

$$\mathbf{u}_{*}^{2} = \frac{\pi}{4} \cdot \frac{\boldsymbol{\mu}_{\mathrm{sf}} \cdot \mathbf{R}_{\mathrm{sd}} \cdot \mathbf{g} \cdot \mathbf{D}_{\mathrm{p}} \cdot \mathbf{C}_{\mathrm{vb}} \cdot \mathbf{C}_{\mathrm{vr}} \cdot (1 - \mathbf{C}_{\mathrm{vr}})}{\left(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot \mathbf{C}_{\mathrm{vr}}\right)}$$

Settling velocity

ľ

$$v_{t} = \sqrt{\frac{4}{3}} \cdot \frac{R_{sd} \cdot g \cdot d \cdot \psi}{C_{D}} \implies v_{t}^{2} = \frac{4}{3} \cdot \frac{R_{sd} \cdot g \cdot d \cdot \psi}{C_{D}}$$
$$\Rightarrow \frac{4}{3} \cdot \frac{R_{sd} \cdot g \cdot d \cdot \psi}{C_{D}} = \frac{\pi}{4} \cdot \frac{\mu_{sf} \cdot R_{sd} \cdot g \cdot D_{p} \cdot C_{vb} \cdot C_{vr} \cdot (1 - C_{vr})}{(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot C_{vr})}$$

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Derivation d/D_p Factor 5

With wall shear stress

$$\frac{d}{D_{p}} = \frac{3 \cdot \pi}{16} \cdot \frac{C_{D}}{\psi} \cdot \frac{\mu_{sf} \cdot C_{vb} \cdot C_{vr} \cdot (1 - C_{vr})}{\left(\sin(\beta) + \alpha_{\tau} \cdot (\pi - \beta) \cdot C_{vr}\right)}$$

Without wall shear stress

$$\frac{d}{D_{p}} = \frac{3 \cdot \pi}{16} \cdot \frac{C_{D}}{\psi} \cdot \frac{\mu_{sf} \cdot C_{vb} \cdot C_{vr} \cdot (1 - C_{vr})}{\sin(\beta)}$$

Delft University of Technology – Offshore & Dredging Engineering

Particle to Pipe Diameter Ratio, Spheres

d/D_p ratio for spheres without τ_1 , matching Wilson & Sellgren (0.013-0.018).

Delft University of Technology – Offshore & Dredging Engineering

Particle to Pipe Diameter Ratio, Gravels

 d/D_p ratio for gravels without τ_1 , higher than Wilson & Sellgren (0.013-0.018).

Delft University of Technology – Offshore & Dredging Engineering

Shear Stress Ratio

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Particle to Pipe Diameter Ratio, Spheres

d/D_p ratio for spheres with τ_1 , still matching Wilson & Sellgren (0.013-0.018).

Delft University of Technology – Offshore & Dredging Engineering

Particle to Pipe Diameter Ratio, Gravels

d/D_p ratio for gravels with τ_1 , higher than Wilson & Sellgren (0.013-0.018).

Conclusions

- It is possible to derive a more fundamental equation for the transition between the heterogeneous flow regime and the sliding flow regime based on the assumption deposition=suspension.
- This fundamental equation matches the d/D_p ratio of 0.015 closely for spheres.
- For sand and gravel particles the d/D_p ratio is closer to 0.03.
- The d/D_p ratio depends weakly on the pipe diameter and the particle diameter.
- The d/D_p ratio depends strongly on the particle shape and the particle drag coefficient.

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering