SUSTAINABLE SEDIMENT SOLUTIONS: STABILIZATION OF CONTAMINATED SEDIMEN

Victor S Magar, Mark Nielsen, Tim Olean, Michael Mengelt, Juha Forsman – Ramboll

WEDA Dredging Summit and Expo – June 4-7 Technical Session 1C – Sediment Management

Bright ideas. Sustainable change.

SOLIDIFICATION VS STABILIZATION

- Solidification: Contaminated materials are encapsulated "physically trapped" to form a solid material that restricts contaminant leaching by:
 - Reduces permeability
 - Increases compressive strength and durability
- Stabilization: Chemical reaction between reagents and contaminated materials - designed to reduce leachability of target contaminants
 - Binds free liquids
 - Immobilizes and transforms contaminants
 - Reduces solubility of COC's

WHY SOLIDIFICATION / STABILIZATION?

- Reduces contamination migration and exposure risks
- Readily supplements other sediment management technologies
- Provides beneficial use opportunities
- Improves sustainability by minimizing energy use and off-shore disposal space
- Provides a stable construction material for redevelopment

MEASURING PERFORMANCE

- Typical Performance Requirements
 - Unconfined Compressive Strength (UCS)
 - Hydraulic Conductivity (HC) lower than baseline
 - Leachability Reduction
 (% reduction? gw goal?)
- Explore optimal mixtures
- Test industrial by-products (e.g., fly ash, slag)
- Optimize mixes and cost

Quantifiable metrics that demonstrate remedial goals can be achieved

Failure Mode of Sample

IN-SITU

- Treat sediment in place
- Minimize short term impacts by reducing remediation time
- Minimize infrastructure upgrades and shoring required to remove deep impacts
- Reduce environmental footprint – less transport, less landfill disposal
- Improve habitat

- On-water work adds complexity
- Must contend with subsurface debris

IN-SITU

EX SITU MASS STABILIZATION (ISS)

- Removes sediment from water body
- Treat Dredge Soils in upland area for beneficial use
 on or off site
- Reduce environmental footprint less trucks, less landfill disposal

EXAMPLE FOR EX-SITU TREATMENT AND REUSE JÄTKÄSAARI HARBOUR, FINLAND MAY 2013

- Urban renewal project: 2011 to present
- Historic port to modern residential area
- Dredged contaminated sediment
- Basin stabilization
- Produce usable construction materials

OPTIMIZING MIX DESIGN

WATER PERMEABILITY LABORATORY TESTS RESULTS WEST HARBOUR PHASE III

Dindor	Binder amount	Water permeability					
DITUEI	(kg/m³)	(cm/s)					
Ce+FA	50+150	1.1 x 10 ⁻⁷					
Ce+FA	50+150	7.4 x 10 ⁻⁷					
Ce+FA	50+150	1.7 x 10 ⁻⁷					
Ce+FA+FGD	50+150	1.1 x 10 ⁻⁷					
LC 3:7+FA	50+150	1.2 x 10 ⁻⁷					
LC 3:7+FA+FGD	50+75+75	1.1 x 10 ⁻⁷					
OSA8	150	8.2 x 10 ⁻⁷					
iviax rarget value 1 x 10° cm/s.							

Binders: Ce = Cement FA = Fly ash LC = Lime + Cement 1:1 FGD = Flue gas desulphurisation agent OSA8 = Oil Shale ash

LEACHING TEST RESULTS WEST HARBOUR PHASE III

Element	Limit value (mg/m²)*	Test results 64 d (mg/m²)	Element	Limit value (mg/m²)*	Test results 64 d (mg/m²)
Arsenic, As	58 >	0.4 - 0.6	Lead, Pb	210 ->	0.2 - 0.3
Barium, Ba	2800 ->	4.0 - 9.3	Antimony, Sb	36 >	0.8 - 16.8
Cadmium, Cd	2.1 ->	0.04 - 0.06	Selenium, Se	14 ->	0.5 - 1.9
Cobalt, Co	280 ->	0.21 - 0.25	Tin, Sn	280 ->	1.5 - 6.5
Copper, Cu	250 ->	0.7 - 3.3	Vanadinium V	700 ->	0.7 - 4.7
Mercury, Hg	1.6 >	0.04 - 0.14	Zinc, Zn	330 ->	2.4 - 4.0
Molybdenum, Mo	70 ->	3.6 - 22.9	Fluoride, F	2800 ->	105 - 124
Nickel, Ni	270 ->	0.4 - 2.7			

Limit values presented in the environmental permit application of Sepänmäki noise barrier.

FIELD TESTING OF MASS STABILIZATION IN JÄTKÄSAARI

Binder Mixes

Cement Cement and fly ash Cement and bio-reactive fly ash Oil shale ash

DIFFERENT BINDER RECIPES

REUSE - SEPÄNMÄKI NOISE BARRIER

- Constructed April to October 2016
- 2893 truckloads of stabilized sediment
- 29,540 cubic meters transported and placed 12 km from West Harbor
- Design height at 5-13 m

OTHER RE-USE EXAMPLES IN THE HELSINKI REGION

- Landfill cap structure and intermediate storage area in Vuosaari, 120 000 m³, 2010-2015
- Alakivenpuisto park, 34 000 m³, 2014-2015
- Road noise wall, 29 000 m³, 2016
- Hyväntoivonpuisto park, 5 000 m³, 2011
- Ida Aalberg park, 100 m³, 2013

RAMBOLL

POST STABILIZATION NATURAL RECOERY

- Wisconsin, USA
 - MGP impacted soils
 - 1.6 hectare ISS effort
 - 61,000 m³ of impacted soils
 - 60 cm clean fill over solidified soil

POST ISS HABITAT EVALUATION

EXAMPLE OF POST ISS NATURAL RECOVERY

- Solidified area now submerged due to rising Great Lakes water levels
- Clean backfill resembles aquatic environment
- Assessed post ISS benthic community
 - Sediment concentrations do not present risk to benthic invertebrates
 - Benthic invertebrate HBI scores similar between ISS and reference areas
 - Benthic community indicative of early succession stage

KEY CONSIDERATIONS FOR BENEFICIAL USE

CHALLENGES

- Public Perception of contaminated material – "not in my backyard"
- Site Management potential long-term commitments to monitoring
- Testing each site is unique and should be tested for strength and contaminant leaching potential

STRATEGIES

- Present in context of sustainability and net environmental benefit
- Integrate materials into brownfield, port development, coastal resiliency, and ecological improvement projects
- Proactive discussions with stakeholders

Change perceptions for sediment use

THANK YOU!

Victor S Magar vmagar@ramboll.com +1 312 288 3840

Mark Nielsen mnielsen@ramboll.com +1 (609) 243-9859

