

REMEDY DESIGN FOR COST-EFFECTIVE DREDGING AND DISPOSAL OF CONTAMINATED SEDIMENTS

Kristin Searcy Bell, Jim Hutchens, Yamini Sadasivam, Victor Magar WEDA Dredging Summit and Expo – Chicago, IL June 2019

PRESENTATION OUTLINE

Site Location and Description

Site Investigations and Preferred Remedy

Remedy Design Approach

Challenges and Lessons Learned

OTTER CREEK LOCATION

- Located in northwest Ohio, part of the Maumee Watershed
- Discharges into Maumee Bay, western basin of Lake Erie
- Located with Maumee Area of Concern (775-acre area)

SITE DESCRIPTION

- Industrial area
 - East railroad yards / West phragmites wetland
 - Pipelines located adjacent to creek
 - Commercial and industrial properties
 - Municipal and industrial outfalls discharge into creek

PAST INVESTIGATIONS

1990s:

State Agency sampling

2007-2010:

Sediment investigation

2010-2011:

Data gap and confluence investigations

2012-2013:

Focused feasibility study

2016-2018:

Predesign Investigation

PRE-DESIGN REMEDIAL INVESTIGATION (2016 – 2018)

RAMBOLL

REMEDIAL OBJECTIVE

Remedial Action Objective (Creek and Confluence Area)

Reducing benthic invertebrate exposure to chemicals of concern and associated toxicity below levels of concern

Chemicals of Concern

- Polycyclic aromatic hydrocarbons (PAHs)
- Diesel range organics (DROs)

SEDIMENT MANAGEMENT AREA (SMA)

- Creek
 - Lower 1.7 miles
 - Width of creek: 25 to 85 ft
- Confluence
 - 5.5 Acres

PREFERRED REMEDY ALTERNATIVE

Sediment removal and cover placement

Creek

- Remove sediments up to a depth of 4 feet below the sediment surface or to native clay (whichever is less)
- Place 1 foot of cover material over dredged areas

Confluence

• Remove sediments at depths ranging from 1 to 5.5 feet

DREDGE DESIGN

- Sediment remedy is currently in design phase
- Approximately 50,000 CY of sediment identified for removal
- Sediments are proposed to be hydraulically dredged
- Advantages of hydraulic dredging over mechanical dredging
 - Cost and time efficient
 - Can be implemented with minimal footprint and lesser impacts to adjacent wetland areas
 - Lesser potential for sediment resuspension

Mechanical Vs Hydraulic Dredging

TYPICAL DESIGN CROSS-SECTIONS OF CREEK

Upstream

Delineation of creek boundary

- Site walkthrough/ visual survey
- Upland and sediment surface elevation data
- Aerial imagery
- Water elevation
- Sediment surface morphology

TYPICAL DESIGN CROSS-SECTIONS OF CREEK (CONTD.)

Downstream

COVER MATERIAL

A. 1. A. M. 18 18

SEDIMENT REMOVAL IN THE CONFLUENCE

Confluence sediment removal depths range from 1 to 5.5 feet

SEDIMENT DISPOSAL

- Hydraulically dredged sediments will be pumped to the nearby Confined Disposal Facility (CDF)
- Potential pipeline routes are being considered:
 - Via water Pipeline would be submerged and anchored to the bottom floor to prevent interference with boat traffic
 - Over land Pipeline would be protected at road crossings
- CDF disposal area is designated for contaminated sediment – these sediments are not authorized for reuse

PROPOSED CDF CELL LAYOUT

- Two-stage settling system
- Overflow from Cell 1 within culvert will allow flocculent addition and assist in mixing
- Effluent from Cell 2 will be pumped to USACE CDF

RAMBOLL

COVER MATERIAL PLACEMENT

- Following removal a 1-ft clean sand layer will be placed on the new sediment surface
- Backfill will be placed in shallow lifts to reduce mixing with underlying sediment
- Dredging and cover placement will start upstream and move downstream to the confluence

CHALLENGES AND LESSONS LEARNED

- Sediment removal in narrow creek:
 - Identified site-specific benefits of hydraulic dredging versus mechanical dredging
 - Due to low bridge clearance, determined dredging equipment will need to be removed from creek and replaced on other side of bridges
 - Established dredge slopes to maintain integrity of existing creek banks while aiming to maximize volume of contaminated sediment removal
- Use of local CDF
 - Collaboration with USACE and local Port Authority allowed for use of local CDF for disposal of hydraulically dredged material
 - Modifications to Port Authority CDF designed to facilitate settling of sediments and meet the USACE effluent criteria from Cell 2.

QUESTIONS?

Kristin Searcy Bell ksbell@ramboll.com 312-288-3864

