

Bonner Bridge Submerged Aquatic Vegetation Mitigation

Phillip Todd (Atlantic Reefmaker) Mark Fonseca (CSA) Tyler Stanton (NCDOT)

Western Dredging Association June 5, 2019 Session 2B-1

- Bonner Bridge only direct connection of the NC Outer Banks to the mainland – in severe disrepair and required replacement
- Need 1.28 acres (0.52 hectare) new seagrass for Bonner Bridge impacts
- No nearby candidate areas to be "fixed"
- Here:
 - Apply models of wave energy ↔ seagrass landscapes
 - Reduce wave energy on patchy seagrass beds
 - **↑**Seagrass patch #, expansion, coalescence = increased acreage

Seagrass landscapes change across disturbance gradients

Increasing currents, waves, bioturbation

(disturbance extent, intensity, duration, frequency, sequence)

WEDA DREDGING SUMMIT & EXPO '19

Tipping points in NC seagrass cover

Mitigation location and strategy

Forecast seagrass cover response to wave \checkmark

- Seagrass cover *f*(RWE) before *vs* after wall
- For every foot of wall we forecast ↑ 150 ft² (13.9 m²) of seagrass
- 500' of wall = ~1.7 ac (0.69 ha)

APPROACH

Alathod	installation issues	Mobilization Hsues	Maintenance Isaues	Cost installed for 1600 linear feet (without transportation); all numbers are rough estimates and nor to be used for bidding	Wave attenuation and estimated resiliency over ~10y	Est. EFH utility flow. medium. nigh)	Potential site impacts (lower impacts result in a higher score)	Remarks	Write
Living Wave Barrier (28)	Weight: can be moved in variable amounts with associated costs of handling (5)	Versatile because of piecemaal construction and comparatively light lift per piece (5)	Limited potential for settling (5)	TBD: without deep anchors as required for previous projects (not required at this site); \$400 per linear foot	High: solid objects embedded in shoal wilfr an ability to mäintain position - single row effectiveness in wave sampening (5)	Moderate – high abundant surface area for attachment and interstitial space for small fauna (4)	Low- moderate because of piecemeal construction (4)	Specifically designed for wave breaking and oyster habitat provision. Engineering being established but based on well-known materials. One row of abructure will suffrice. Prie-designed.	http://www.fesfmaker.azm/n evs/2013/ocosystemo-living- wave-barrier
Reef Links (28)	Weight: moved in low to moderate weight modular units (5)	Versatile because of slootmoal construction and comparatively light lift per piece (5)	Limited potential for settling (5)	5125-250 per linear foot	High: solid objects both linked and embedded in shoal with an sbillty to maintain position - single row effectiveness in wave dampening (5)	Moderater highly abundant sufface area for attachment; modifiable (o provide (internal access to larger fauna (4)	Low- moderate because of piecemeal construction (4)	Specifically designed for wave breaking and oyster habitat provision, Engineering being established but based on well-known materials. One row of structure will suffice. Pre-designed	Patent pending; CSA
Oyster reef (24)	Weight: can be moved in variable amounts with associated costs of handling (5)	Versatile because of piccomeal construction (5)	Potential addition of shell over time due to changing geometry (depending on tectuitment) and settling (3)	S45-55 per y0 i Ext 1000 ydS needed	iow-moderate based on erodability vs. netural recruitment and growth success single row effectiveness in wave campening if elevation can be sustained (2)	High; ovsters play the role of an ecosystem engineer if displaying successful recruitment (5)	Low- moderate because of piecerneal coestruction (4)	Extremely valuable habitatibut unknown whether it would persod in this wave energy. Would likely require additional engineering to be high enough to ureak waives and remain stable (e.g., some core structure). One row of structure) one row of structure.	http://msucares.com/orec/en/ /bublications/living_shoreling s.com_estimates.pdf
Reef Balls (24)	Weight, moved to low to moderate weight modular units (5)	Versetile because of precenteal construction and companatively ught lift per palece (5)	Potential for settling (3)	\$44 per linear foot * estimated 4 rows for complete wave energy reduction	Moderate: solid objects but unknown ability to maintain position in the apparent absence of a connection system - multiple rows need for complete wave dampening (3)	Moderate-high; highli abundant surface area for attachment; modifiable to provide internal success to larger fauna (4)	/ Low- a moderate because of piecement construction (4)	Several rows to provide required wave atterivation. Pre-designed, Additiona licensing costs TBD	http://www.gulfalliancerrain g.erg/dtifiles/Cost920ent92 Manterance950ef820ei%20uving #205hpreines.pdf
Rio-rao (22)	Weight: can be moved in variable amounts with associated costs of handling (5)	Versatile because of piecemeal construction (5)	Some- addition of rock over time due to changing gcometry and settling (3)	\$125 per linear foo	Low-Moderate: absence of structural connectivity and highly dependent on sure and material density - single row effectiveness in wave dampening (2)	Modenille: abundant suiface alea for attachment and interstitial space for small founa (3)	Low- moderate because of piecemeal construction (4)	Slow change in geometry over time will require planned maintenañoe. Well-established engineering: One row of structure will suffice	http://msicares.com/crec/er j/publicationz/ivna_shorein s_cost_estimates.pdf
Beach Prisms (21)	Weight; moved in moderate to high weight modular unite (4)	Large modular units require moderate heavy lift (3)	Potential for seltling (3)	\$127-50 per linear foot	Moderate-High: solid objects but unknown ability to maintain position in the apparent absence of a connection system - single row effectiveness in wave dampening (4)	Moderater modifiable to provide internal access to larger fauna (4)	Moderate- high because of fixed module construction (3)	Umited Information on actual wave attenuation and hebitat value. Stability of geometry cuestionable. Unknown number of rows to provide regulard wave attenuation. Pro-designed.	http://www.beachprisms.com Z
Sabions 21)	Weight; can be moved in variable amounts with associated costs of handling (5)	Versatile because of piecemeal construction (5)	Containment will deteriorate, changing functional geometry: needs maintenance every few years; potential for settling (2)	тво	Low-Moderate: based on containment decay – single row effectiveness in wave dampening (2)	Moderate; abundant surface area for attachment and interstitial space for small fauna (3)	Low- moderate because of piecemeal construction (4)	Containment with plastic problematic because of hotodegradation and fragmentation; containment with wire leads to puncture wound potential; in a wave prone system the change in geometry is also problematic. One o more rows of structure may be required.	http://www.sepiengineering om/project/historic-rivetfror erosion-mitigation/ r
WADS (19)	Weight; moved in moderate to high weight modular units (4)	Large modular units require moderate heavy lift (3)	Potential for settling (3)	WAD at \$180 to \$250 per linear foot	Moderate – and multiple rows need for complete wave dampening (3)	Low; smooth surfaces may limit attachment; modifiable to provide internal access to larger fauna (3)	Moderate- high because of fixed module construction (3)	Requires at least 2 rows of structure. Stable but very heavy. Pre-designed. Additiona licensing costs TBD	http://www.seaandshoreline om/#!wave-attenuation- I device-wads/c1qrg

Mitigation Alternatives Analysis

- Eight options
- Factors reviewed/ studied
 - Mobilization challenges
 - Installation issues
 - Costs
 - Maintenance Concerns
 - Estimated essential fish habitat (EFH) utility
 - Potential site impacts

How Atlantic Reefmaker Technology Works

Installation Dec 2016 – Jan 2017

RESULTS

Full Installation & Monitoring

- Δ Biological colonization
- Δ Sediment elevation
- Δ Seagrass coverage

Near field sediment elevation survey

- Transect surveys of elevation
- Erosion pits under structure
- Shoaling on south (lee) side

Near field sediment elevation survey

~15% areal cover relocated seagrass

Substrate % Cover	Infrequent Inundation	Frequent Inundation	Near-continual Inundation
Embedded Granite Rock	0	19	17
Concrete Base	27	70	90

Epibiont Cover/Relocated Seagrass

+ 1.34 acres (0.54 ha) in zones with >33% energy \downarrow

Areas of assessment	% cover 2017	% cover 2018	Gain per base (ac/ ha)	Ref. adj change % cover
Reference areas (4, 2.48 ac/ 1.00 ha)	16%	20%	0.22/ 0.09	
Total area of >66% wave Energy decrease	20%	43%	1.18/ 0.48	22%
Total area of 34-66% wave Energy decrease	23%	46%	1.02/ 0.41	18%
Total area of 5-33% wave Energy decrease	30%	30%	0.31/ 0.13	6%

WEDA DREDGING SUMMIT & EXPO '19

- Seagrass coverage changes across disturbance gradients
- NC seagrass/disturbance well studied and modeled
- Manipulation of gradient = changes in seagrass coverage
- Reefmaker method with suspended wavebreak structure:
 - Supported new, persistent seagrass cover
 - Provided substantial additional EFH service
- Cautiously optimistic seagrass acreage > mitigation requirements
- Continued monitoring to validate and improve forecasting

Questions?

Phillip Todd p.todd@atlanticreefmaker. Mobile – (919) 971-5641

WEDA DREDGING SUMMIT