

Kurtz Bros., Inc.

Family-owned waste-to-resource company with 70 years of experience operating throughout the state of Ohio and Midwest

Multi-faceted industry leader in bulk material production and distribution, beneficial reuse, and waste stream management

The Kurtz Diversity...

- Manages and distributes over half a million yards of bulk landscape supplies every year
- Largest organics recycler in the State of Ohio
- Recycles over 350k yards of construction & demolition debris annually
- Operates waste-to-energy anaerobic digesters for the City of Akron
- Operates the Largest sediment recycling center in the Great Lakes

70 Years Recycling Sediment

From 1948

Starting in 1948, Kurtz's legacy with sediment recycling began when our founders utilized flooded Cuyahoga River valley sediment as a component of their topsoil.

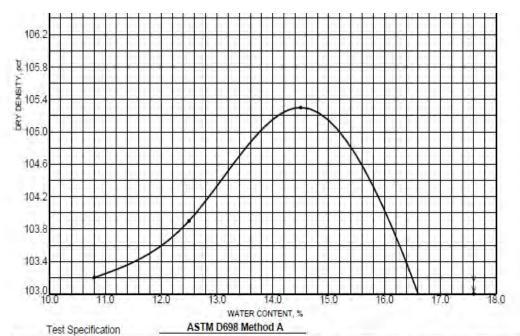
To Present

In 2014, Kurtz entered into a long-term contract with the Port of Cleveland to reclaim and repurpose dredged river sediment.

Port of Cleveland Sediment Recycling Center

- Entering our 4th year of operations at the facility
- Contracted to manage and remove at least 120k yards of sediment per year
- Last year Kurtz managed the largest volume of sediment to date (160k yards)
- Sediment characteristics improving
- Product and Sales volumes increasing
- Version 3.0 of site design

Sediment Analysis Starting Point


- Origin/Source
- Physical
- Chemical/Environmental

CLE Sediment: Sand

CLASSIFICATION		Nat	Sp. G.	LL.	Di.	%>	% <
USCS	AASHTO	Moist	3p. 0.	LC.	PI	3/4 in	No.200
		9.0					
TEST RESULTS		MATERIAL DESCRIPTION					
Maximum Dry Density Optimum Water Content	105.3 PCF 14.5 %		CD	F-Great I	Lakes #1	sand	
PROJECT NAME KURTZ BROS VAP (P.O.#164480) PROJECT NUMBER_A15031 LOCATION_ DATE_7/24/15	RIOUS	SAMPLE	LOCATION F	N:			

TEST

Internal Angle of Friction, degrees Remolded to 98% of max. dry Density at optimum moisture (AASHTO T236)

RESULTS

45.5°

Sieve Size	Percent Passing
3/4"	100.0
1/2"	99.4
3/8"	98.8
#4	95.0
#8	90.6
#10	89.1
#16	83.5
#20	78.1
#30	70.7
#40	58.4
#50	42.7
#60	32.9
#70	24.9
#80	19.7
#100	16.2
#140	13.8
#200	10.6

CLE Sediment: Silt/Clay

-					
TEST NO.		1	PARTICLE SIZE ANALYSIS(ASTM D422)		
Initial time	t ₁	8:26 A.M.	SIEVE SIZE	PARTICLE SIZE (mm)	% PASSING
Final time	t ₂	10:26 A.M.	//40	0.000	400.0
Elapsed time, sec	t	7200	#10	2.000	100.0
	L(4.)	0.224	#20	0.850	99.8
$V_{U}(t_1)-V_{L}(t_1)/a$	h(t ₁)	0.331	#40	0.425	99.6
$V_{U}(t_{2})$ - $V_{L}(t_{2})/a$	h(t ₂)	-10.155	#100	0.150	98.7
		254.05	#200	0.075	96.8
Upper Pressure – Lower Pressure x 70.37	PB	351.85		0.028	75.0
	k	6.57x10 ⁻⁷		0.018	65.7
Coefficient of Permeability, cm/sec	AVG	6.61x10 ⁻⁷		0.011	47.8
				0.008	40.3
				0.006	31.9
				0.003	21.6
				0.001	11.3
			% Gravel		0
			% Sand		3.2
	No.		% Silt		80.4
			% Clay		16.4
	The second second				
			ATTERBERG LIMITS(ASTM D4318)		
			Liquid Limit		40
	100		Plastic Limit		30
			Plasticity Index		10
			Above/Below the A-line*	Below	Above

Creating Value in the Market

Common Sediment Reuse Applications:

Soils:

- Engineered Soils
- Custom Specialty Soils

Aggregate:

- Pipe Bedding
- Sub-grade
- Structural fill
- Concrete
- LSM

Markets:

- DOT Projects
- Landscaping
- Construction
- Brownfield redevelopment
- Agriculture
- And More

Clay


- Landfill Cap
- Compactable Fill
- Manufacturing materials

Sediment Approved for use in State Department of Transportation

CDF12 Sediment Processing Center ODOT 1069 Approval

- Producer/Supplier Code: 5149
- Plant Address: 4301 North Marginal Rd., Cleveland
- Lab Number: 110
- Materials Supplied:
 - 703.11 Granular Backfill
 - 1069 Topsoil
 - 203 Embankment-703.16 B

Sediment Blend Meeting State Specification for Topsoil

LAB.	SAMPLE IDENTIFICATION	MECHANICAL ANALYSIS % SAND % SILT % CLAY			U.S.D.A. TEXTURE CLASS	
631130	CDF STATE SPEC	63	22	15	SANDY LOAM	

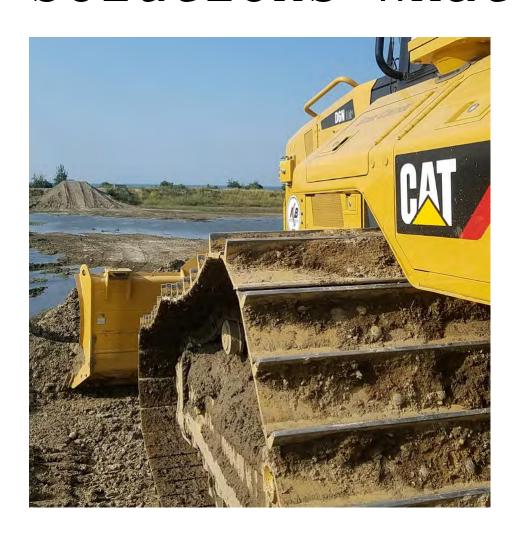
TEST			RESULTS	UNITS
рН			7.6	su
ORGANIC 1	MATTER		5.4	**************************************
TEXTURE (CLASSIFICA	TION	SANDY LOAM	

Agriculture Applications

- Opportunities for use as Soil Amendment
- Targeted
- Challenges with timing
- Logistics
- Wet vs. Dry
- Stand Alone value

Challenges of Working with Sediment

- Dewatering Wet/Damp Material
- Screening/Processing
- Markets/End Users
- Sediment Variability
- Foreign Matter
- Chemicals of Concerns
- Commodity Logistics
- Weather
- Neighbors



Additional Opportunities

- -Look for "two birds one stone" approach
- -Don't just rely on sediment- RSM
- -Regional opportunities
- -Site needs
- -Local Partners

Kurtz Bros. Sediment Solutions What's Next...

Continue to focus on innovative reuse opportunities that can help cost-effectively solve water quality and sediment capacity issues for dredged river sediment throughout Ohio and in other parts of the country.

Growing Focus:

- New innovative uses for dredged river sediment
- Alternative technologies
- Agriculture solutions to address water quality issues
- National sediment challenges including East Coast and Mountain West

QUESTIONS?

For more information check us out online at: www.kurtz-bros.com

Or contact directly:

Jason Ziss 216.986.7019 jasonz@kurtz-bros.com

