THIN-LAYER PLACEMENT SEDIMENT DEPOSITION MODEL

Don Hayes

Research Environmental Engineer Environmental Laboratory Engineer Research and Development Center

OBJECTIVE

Estimate post-dredging surface elevations across a thin-layer placement site using a mechanistically correct model for movement and thickening of hydraulically-dredged sediment given specific confinement conditions.

Topics

- Existing Models
- Model Formulation
- Application
- Research Needs
- Summary

EXISTING MODELS

CORMIX (Doneker and Jirka 1990)

 Mixing model for buoyant discharges. Predicts WQ changes resulting from discharges with a density lower than receiving waters (usually because of temperature)

• D-CORMIX

Implementation of CORMIX for suspended sediments, i.e. nonbuoyant plume. Computes sediment deposition thicknesses.

• CDFATE (Havis 1994)

Inverted implementation of CORMIX for "sinking" plume. Computes suspended solids concentrations and sediment deposition thicknesses.

MODEL FORMULATION

INFLUENT CHARACTERISTICS

- Typical density range
 - ~100 kg/m³ (100% fines)
 - ~200 kg/m³ (100% sand)
- Solids content
 - Fine Material (silts, clays)
 - Coarse material (sands, gravel)
 - Clumps

AFTER DISCHARGE

- Coarse materials settle near the point of discharge, quickly reaching their maximum density
- Remaining components very mobile:
 - Thin, fine sediment slurry
 - Water with suspended sediment
- Result:
 - Complete separation by particle size
 - Lateral movement to a point of stability

RAPIDLY SETTLING SOLIDS

- Some solids deposit at or very near the point of discharge
- Clumps
 - Mounds with side slopes 1:5 or less
 - Individual clumps at in situ density; overall mound density depends on clump size and resulting voids
 - > Higher density displaces fine slurry deposits
- Coarse material (sands, gravel)
 - Mounds with side slopes ~ 1:10
 - Settled dry density ~ 1600 kg/m³ (100 lb/ft³)
 - > Higher density displaces fine slurry deposits

FINE PARTICLE SLURRY

- Zone Settling Regime (1st day)
 - Fine solids coalesce to form "thin slurry"
 - Thin slurry is a dense fluid
 - More dense than water; exists on bottom
 - Moves laterally until reaches a stable slope (~1H:1000V)
 - Usually transitions to Compression Settling in 6-12 hrs
 - Lateral velocity depends on slurry viscosity
- Compression Settling Regime
 - Transition occurs at ~ 250 kg/m³
 - Final densities depend on settling time and in situ density; > 350 kg/m³ common
 - Lateral movement slower due to increased viscosity
 - Stable slope ~ 1H:100V

LAYER DEFINITIONS

SLURRY THICKENING

- Flocculent Settling in supernatant (WL)
 - Typical concentrations < 100 mg/L</p>
 - Mass not sufficient to significantly affect deposition depths
- Zone Settling (ZL)
 - Initial concentrations > 100 kg/m³
 - Begins within 1 hour, usually minutes
 - Transitions to Compression Settling within 24 hrs
- Compression Settling (CL)
 - Volume reduction much slower than Zone Settling
- Secondary Consolidation (FL)
 - Not significant during dredging operation

MODEL APPLICATION

SITE DEFINITION

• Rectangular grid

- User-defined Cell types:
 - Land cell
 - Elevation
 - Water cell
 - Pre-dredging sediment elevation
 - Vegetation density
 - Containment cell
 - Elevation
 - Flow restriction cell
 - Degree of restriction

Model requires external "ring" of cells for mathematical stability

NECESSARY INFORMATION

Dredged sediment characteristics

- In Situ Density
- Grain-size distribution
- Sedimentation properties (CST)

Site Information

- Pre-dredging site topography
- Degree/extent of confinement
- Water surface elevations (e.g. tides)
- Ambient currents

Project information

- Discharge location
- Discharge rate and density

SEDIMENT MASS BALANCES

Parse influent discharge into appropriate layers

Coarse sediment added to FL

- Sediment slurry added to ZL
- Excess water added to WL

Layer changes over time

- Foundation Layer (FL)
 - Settled coarse material & clumps add sediment mass
 - Settled fines from supernatant settles adds mass

SEDIMENT MASS BALANCES

• Water Layer

- Newly discharged suspended sediments increase mass
- Settled sediment moving to FL decreases mass
- Lateral flows may increase or decrease mass

Zone Layer

- Newly discharged fine sediments increase mass
- Thickened sediments move to CL, decrease mass
- Lateral flows may increase or decrease mass

Compression Layer

- > Thickened ZL sediments move to CL, adding mass
- > All CL sediment retained in layer for duration of
 - dredging

VOLUME BALANCES

• Total cell volumes defined by:

- > Pre-dredging bathymetry (Foundation Layer)
- Water surface (which may vary by time step)

Foundation Layer

- Settled coarse material & clumps increase elevation; constant density assumed
- Settled fines from supernatant increase elevation; minimal volume

Compression Layer

- > Thickened ZL sediments increase thickness
- Density increases reduce thickness

VOLUME BALANCES

Zone Layer

- Fine sediment discharges add volume
- Thickened ZL sediments move to CL, decrease volume
- Lateral sediment movement may increase or decrease volume

Water Layer

Only exists if ZL + CL + FL volumes are lower than externally prescribed water layer

COMPUTATIONAL APPROACH

- Start at t = 0
- Time step 1
 - Calculate inflows to FL (coarse material), ZL (fine material), and WL (fine material)
 - Calculate lateral movements in WL and ZL for all cells
 - Calculate mass and water balance for FL for all cells
 - Calculate mass and water balance for CL for all cells
 - Calculate mass and water balance for ZL for all cells
 - Calculate mass and water balance for WL for all cells
- Repeat for all remaining time steps, starting at time period 2.

SUMMARY

- Although in-water placement models exist, their forte' is water quality rather than sediment movement and thickening
- Basic formulation of thin-layer placement model
- Sedimentation processes modeled using CST results
- Formulation allows evaluation of a wide range of placement strategies

Questions?

