SUSTAINABLE, COMBINED **REMEDIES AND RESTORATION OF THE ONONDAGA LAKE SHORELINE** SYRACUSE, NY

WEDA Dredging Summit and Expo '19 Dan Rockefeller - June 2019

RAMBOLL Bright ideas. Sustainable change

AGENDA

- 1. HISTORY AND CONTEXT
- 2. GOALS AND OBJECTIVES
- 3. SITE TOUR

MAJOR THEME: A HOLISTIC APPROACH IS VITAL TO COMBINING REMEDIES:

- VISIBILITY AND A VENUE FOR COLLABORATION ACROSS ALL PROJECT SCOPE AND SCHEDULES
- WILLINGNESS TO MANAGE SCOPE, SCHEDULE, AND DESIGN WITHIN AND AMONG CONSULTANTS, CONTRACTORS, AND VARIOUS OWNERS
- INSTITUTIONAL LEGACY IS AN IMPORTANT VALUE

ONONDAGA LAKE

4.6 mi. long x 1 mi. wide
Average depth:
35 ft (maximum depth: 63 ft) Urbanized drainage basin of 285 square mi.

Municipal WTP second largest water input Dredging completed in 2014; capping completed in 2016

Significant municipal upgrades to WTP and CSOs ongoing: \$1B+ in municipal and remedial investments Habitat restoration ongoing: 90 acres of wetland restored to date, 100s of acres of benthic habitat enhanced, 1000+ acres subject to sustainable remediation efforts, ~800,000 plants installed to date

At the center of Syracuse and first nations

TABLE 1			
CHEMICAL CHARACTERISTICS OF SOLVAY PROCESS WASTE			
Representative Chemical CaCO 2 CaO ³ SiO ₂ H ₂ O of hydration Mg(OH) ₂	Analysis (from 20% 17% 12% 10%	Kulhawy, et al., 1977) NaCl CaCl R ₂ O ₃ Ca(OH) ₂	6 6 6 6 6 6 7 8 6 6 7 8 6 7 8 7 8 7 8 7
SiO ₂	88 78	Where R = Aluminum	48° n, Iron

ABOUT ONE TON OF SOLVAY WASTE WAS GENERATED FOR EVERY TON OF SODA ASH PRODUCT

WASTEBEDS 1-8 OVERALL SITE PLAN

SHORELINE (2015, ONE YEAR POST PLANTING)

RAMBOLL

GROUNDWATER COLLECTION SYSTEM

- Adjacent to wetlands
- Eliminated need for low permeability cover
- Groundwater eliminated from wetland functioning (accounted for in wetland design)

PERCHED WETLANDS

- Dovetailing of wetland and seep collection liner systems
- Surface water management and timing requirements
- "Sterile" topsoil used on seep apron – grassland quality
- Construction and planting schedule management – irrigation plan

2010, PRE-CONSTRUCTION

PERCHED WETLANDS

- Dovetailing of wetland and seep collection liner systems
- Surface water management and timing requirements
- "Sterile" topsoil used on seep apron – grassland quality
- Construction and planting schedule management – irrigation plan

2014, DURING CONSTRUCTION

CONNECTED WETLAND

- Schedule
 management
- Coordinated dredging/grading plan and approach
- Dredge cut for segmented breakwater
- Alignment of groundwater collection system

2014, DURING ONONDAGA LAKE DREDGING

CONNECTED WETLAND

- Smooth shoreline transition
- Dredge cut and final grading of wetland to meet mitigation requirements

2018, CONNECTED WETLAND AND SHORELINE

MITIGATION WETLANDS

- 2017, one year post planting of connected wetland; two to three years post planting of perched wetlands
- Native grassland on seep apron (background/right)
- Vegetated cover system (foreground)

SHORELINE STABILIZATION AND RESTORATION

- Transitional habitats
- Biodiversity
- Volunteer species

REVETMENT

- Nature-based approach to provide habitat value
- Stinger approach to meet schedule and improve safety
- Shoreline access road repurposed as in-lake cap material

SUSTAINABLE COVER SYSTEM

- Nature-based approach to provide habitat value
- Variable depths to meet remedial vs. recreational requirements throughout the site
- Application of locallysourced compost to provide protection, establish desired vegetation, and suppress invasive species

CONCLUSIONS

Major theme: a *holistic approach* is vital to combining remedies:

- Visibility and a venue for collaboration across all project scope and schedules
- *Willingness* to manage scope, schedule, and design within and among consultants, contractors, and various owners
- Institutional legacy is an important value

