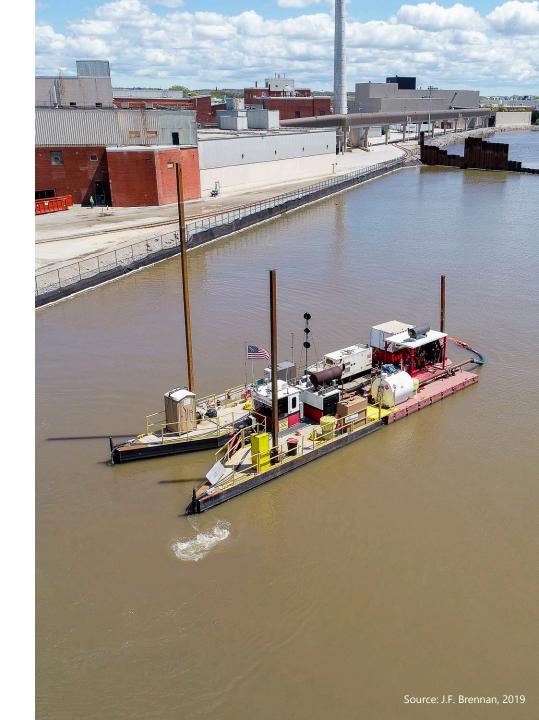
Remedial Design and Construction Using an Adaptive Management Approach for the Lower Fox River Remediation Project

Presented by: T. Blackmar, PE, Tetra Tech, Inc. P. LaRosa, PE, Anchor QEA, LLC

Coauthors:

D. Binkney, Anchor QEA, LLC

G. Berken, The Boldt Company

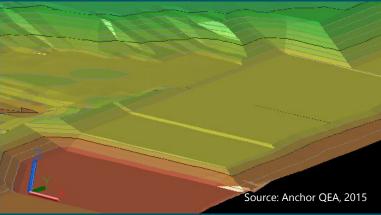

D. Roznowski, PE, Foth Infrastructure & Environment, LLC

Overview

- History and Background
- Adaptive Management and Lessons
 Learned
 - Handling Toxic Substances Control Act (TSCA)-impacted sediment
 - Refined delineation
 - High subgrade
 - Remediation adjacent to uplands and in-water structures
 - Submerged utilities
- Conclusions

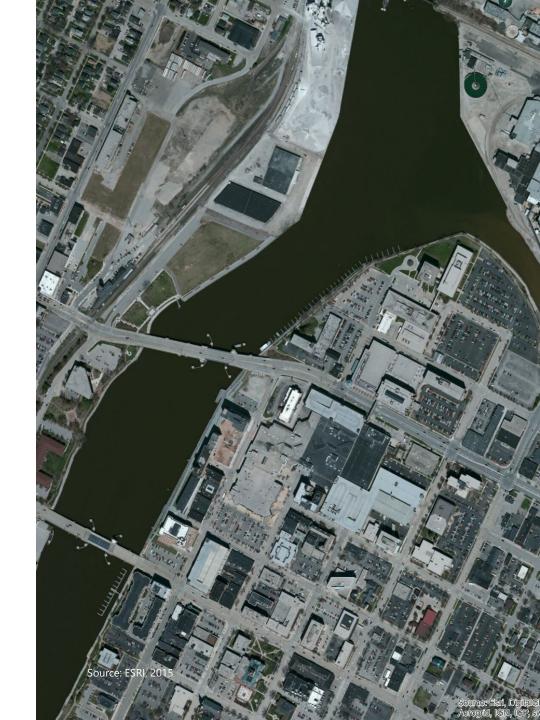
History and Background

History and Background


- **Project site**: Operable Units (OUs) 2 to 5
- History:
 - Home to 24 historical and active paper and pulp mills
 - PCBs released between the 1950s and 1970s
 - Fish Advisory since 1976
- Active Construction Timeline: 2009 to 2020
- Total Estimated Dredge Volume: >6.2 million cy
- **Total Estimated Cap and Cover Placement**: 790 acres (estimated at project completion)
- Total Estimated Separated and Reused Sand: 766,500 tons

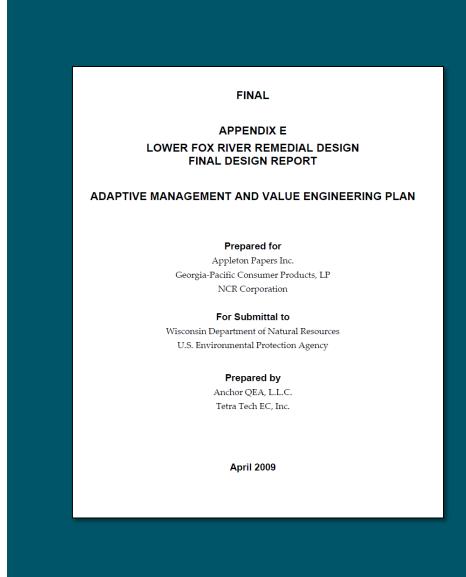
History and Background – Project Team

- **Client:** Lower Fox River Remediation, LLC
- **Agencies/Oversight Team:** USEPA, Wisconsin Department of Natural Resources, The Boldt Company, and technical experts
- Lead Design Build Contractor: Tetra Tech EC, Inc.
- Subcontractors:
 - Construction: J.F. Brennan Marine
 - **Sediment Processing:** Stuyvesant Projects Realization, Inc.
 - Engineering: Anchor QEA, LLC and Tetra Tech CES, LLC
- Quality Assurance: Foth Infrastructure and Environment, LLC

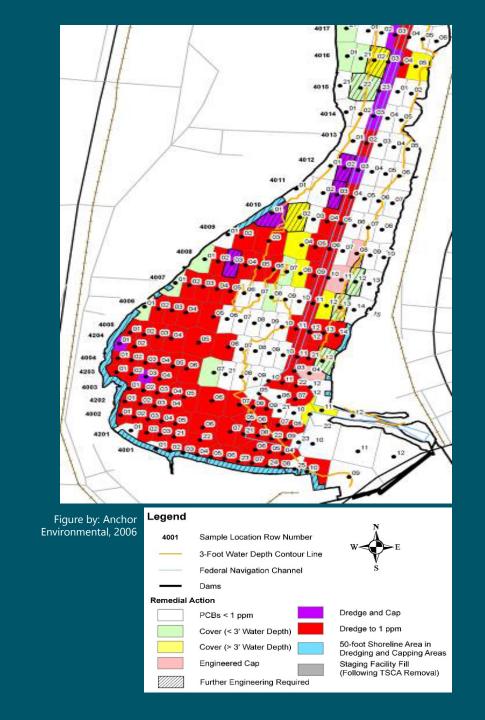


History and Background

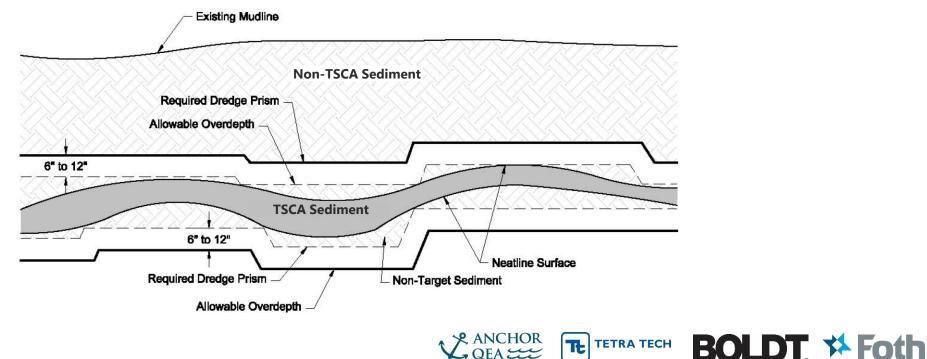
- Record of Decision (ROD) issued in 2003
- ROD Amendment issued in 2007
- Remedial design phases: 30%, 60%, 90%, and 100%
- Adaptive Management (AM)/Value Engineering (VE) Plan developed during design
- More than 8,000 sediment cores collected for remedial design


History and Background – Components of the 100% Design

- Dredging
 - "Neatline" surface based on geostatistical models
 - Targeted elevation prisms
 - Dredging to accommodate caps to meet post-cap water depth criteria
- Engineered capping
 - 13- to 33-inch-thick cap types
 - Shoreline caps 43 inches thick or more
- Sand covering
 - 6 inches thick


History and Background – Adaptive Management and Value Engineering

- AM and VE Plan
 - First conceived as part of Remedial Design Work Plan
 - VE to achieve schedule and cost savings with equivalent protection
 - AM and VE elements documented in annual Remedial Action Work Plans



Handling TSCA Sediment Adaptive Management and Lessons Learned

- Objective
 - Accurately delineate TSCA and identify cost-effective disposal
- Approach
 - Accurate delineation based on anticipated removal method
 - Risk-based disposal

- Lower Fox River TSCA delineation
 - Horizontal delineation using Thiessen polygons
 - Vertical delineation based on an average of 50 parts per million (ppm) over
 2.5-foot depth intervals

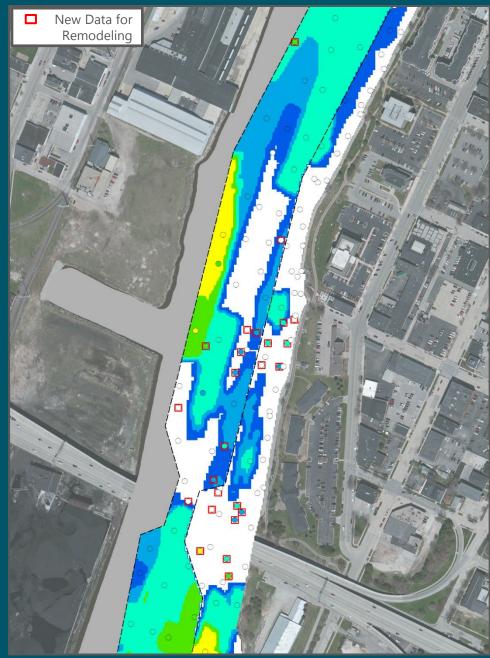
- Dredged in separate events from non-TSCA sediment
 - TSCA: approximately 115,000 cy
 - Non-TSCA: >6.1 million cy
- PCB concentrations measured ex situ in filter cake prior to disposal
 - Results significantly below 50 ppm

- TSCA filter cake disposal
 - Local Subtitle-D landfill permitted to accept waste with up to 50 ppm PCB, regardless of characterization
 - Required permit modification
 - Dewatered filter cake from TSCA-delineated sediment has been carefully monitored, with no exceedances to date
- Resulted in significant cost savings of approximately \$1.4 million

Refined Delineation

Adaptive Management and Lessons Learned

Refined Delineation


- Objective
 - Minimize removal of non-target sediment
- Approach
 - Geostatistical modeling to delineate neatline target dredging surface
 - Infill and design refinement sampling to improve delineation
- Infill sample locations
- Design refinement sample locations
- Able to target specific depths for processing
 - Results in cost and schedule savings

Refined Delineation

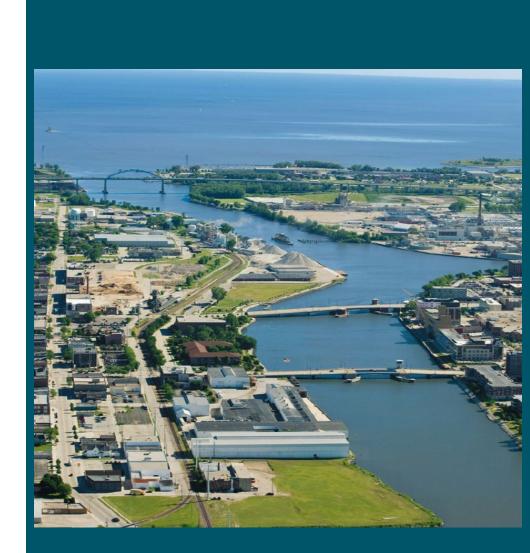
- Infill and design refinement sampling used to remodel geostatistical neatline
- Revised remedial design presented in annual work plans
- 100% Design based on approximately 3,600 sample locations in OU 4
- By the end of the 2020 construction season, design was based on >8,000 sample locations in OU 4

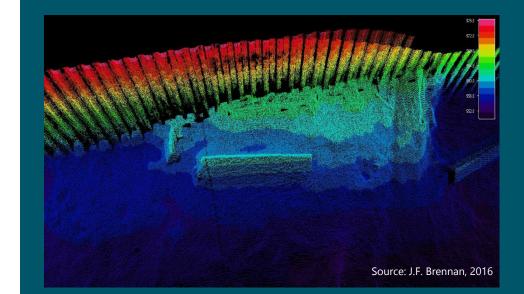
Source: Anchor QEA, 2015

High Subgrade Adaptive Management and Lessons Learned

High Subgrade

- Objectives
 - Minimize dredge of "clean" materials
 - Avoid dredging clay that is problematic for dredging and dewatering
- Approach
 - High subgrade noted in field by dredger
 - Manual poling: <0.3 foot of advancement indicates high subgrade
 - 1-foot cores collected to confirm presence of clay
 - Minimum of six sample locations per 0.5 acre


High Subgrade


QEA

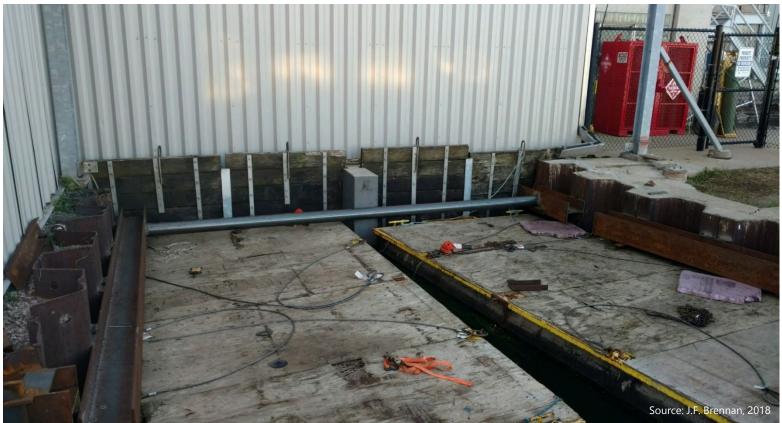
Adaptive Management and Lessons Learned

- Objective
 - Remove contaminated sediment to the extent possible adjacent to shorelines and structures
- Approach
 - Site-specific evaluations of stability
 - Remediation offsets
 - Improvements or replacements, if warranted

- Temporary removal of surcharge loads on the adjacent uplands
- Installation of clean post-dredge buttress
- Installation of new steel structural members
- Temporary excavation behind sheet pile walls

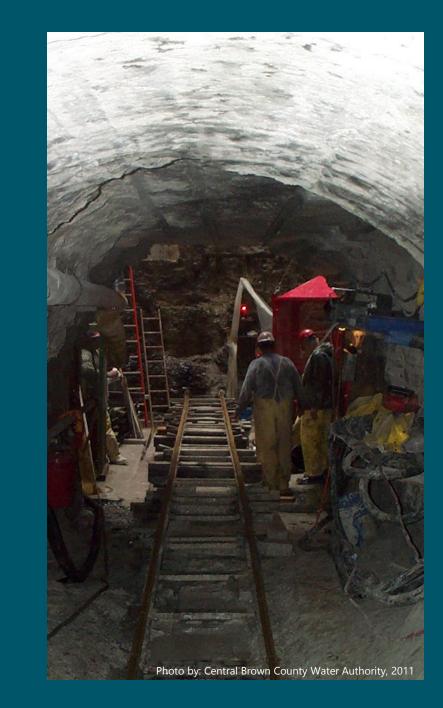
Temporary removal of surcharge loads on adjacent uplands

Installation of clean post-dredge buttress



Installation of steel structural members

Installation of steel structural members



Excavation behind sheet pile walls and removal of upland surcharge load

Adaptive Management and Lessons Learned

- Objective
 - Remediate near submerged utilities
- Approach
 - Determine accurate location
 - Research
 - Dig Safe
 - Field locating
 - Remote sensing
 - Design modifications

- Field Locating via remote sensing
 - Primarily performed by DoC Mapping, LLC
 - Electromagnetic tracing conducted using submerged towfish
 - Provides 95% confidence level of utility elevation and horizontal location

Lower Fox River – Operable Unit 4B

Submerged Utility No. 043 Plan View

Submerged Utilities – Design Modifications

- 100% design
 - 25- to 50-foot offset depending on utility
- Refined design during construction
 - Minimum 5-foot vertical and horizontal offset from the standard deviation zone with 95% probability
 - Capping, sand cover, or no action within offset zone
 - Coordination with utility owner and in some cases the USACE
- Modifications to dredging
 - Dredging outside of offset zone
 - Use of spudded guide barge to safely straddle utility
 - Use of excavator with mounted dredge head
 - Open-suction dredging with diver assistance
 - J.F. Brennan's patented VIC VAC dredge head

J.F. Brennan's VIC VAC includes flexible agitating tines to allow for increased productivity in areas of dense sediment

- Modifications to capping
 - Within the offset zone around utilities, use of specially designed caps (SRA Caps)
 - Maintain federal navigational channel depths and width restrictions including buffers
 - Commercial vessel propeller wash considerations
 - Variable thickness sand isolation caps, some amended with carbon, with gravel armor where applicable
 - Assumes that portions will mix with underlying sediment to reduce concentrations

Conclusions

- Incorporating lessons learned was valuable for streamlining design and construction
- Minimized uncertainty in designs
- AM/VE resulted in overall cost and schedule savings
- Frequent communication shown to be critical to success
- Over-the-shoulder reviews beneficial
- Included focus on worker safety
- Not every idea worked, but the project team was able to modify on the fly due to the AM/VE process

Questions

- Terri Blackmar, PE
- Paul LaRosa, PE
- Daniel Binkney
- Denis Roznowski, PE
- George Berken