

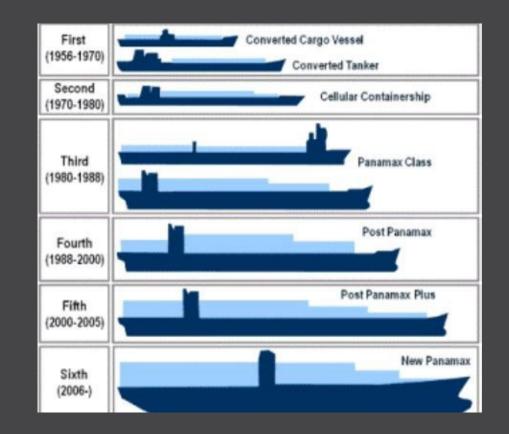
Sabine-Neches Waterway

A Case Study of a Cost Effective and Technically Defensible Sampling Strategy for a 35-Mile-Long Study Area

E.M. Bourne, C.R. Montgomery, B.N. Stevens , and S.E. Bailey

WEDA Summit - Houston, TX July 25-28, 2022

TAINTER GATE



DISCOVER | DEVELOP | DELIVER

INTRODUCTION & BACKGROUND NEW WORK DREDGE MATERIAL INTENDED FOR OCEAN DISPOSAL

UNCLASSIFIED

- Each port in the US has an authorized Federal Ship Channel
- Authorized channel is a specific width and depth
- Widening and deepening of the Panama Canal allows larger ocean freighters to travel between the Atlantic and Pacific Oceans
- Larger boats \rightarrow more goods \rightarrow access to ports
- Port Authorities are improving their ship channels to accommodate this demand
- SNWW has main channel + anchorage basins inland

US Army Corps of Engineers • Engineer Research and Development Center

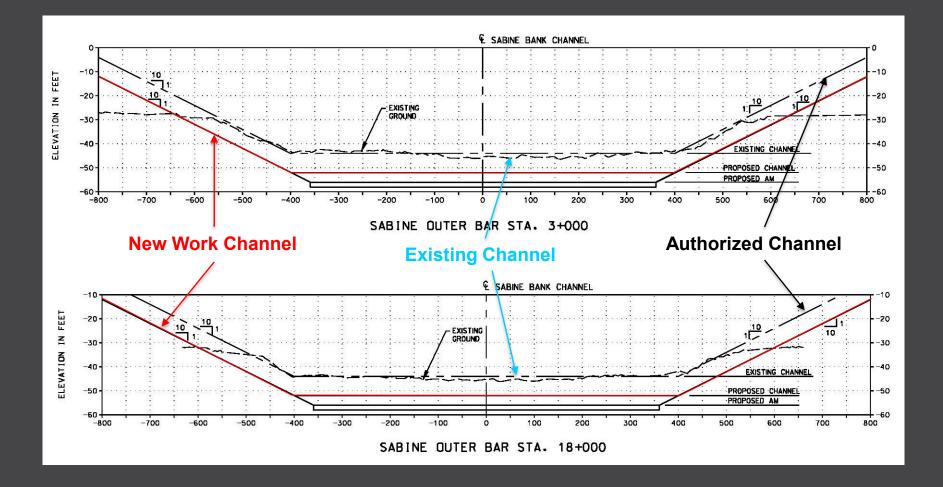
SABINE NECHES WATERWAY PHYSICAL DESCRIPTION OF THE SHIP CHANNEL – CURRENT AND FUTURE

UNCLASSIFIED

CURRENT

 Center Channel: -40 to -45 MLLW deep and 500 to 800 ft wide

FUTURE


- Sabine Neches Nav District is widening and deepening portions of the channel, depending on channel segment and existing widths/depths
- Center Channel: -48 to -50 MLLW deep and 500-800 ft wide

US Army Corps of Engineers • Engineer Research and Development Center

NEW WORK DREDGE PRISM SHIP CHANNEL CROSS SECTIONS – VERTICAL (Z AXIS)

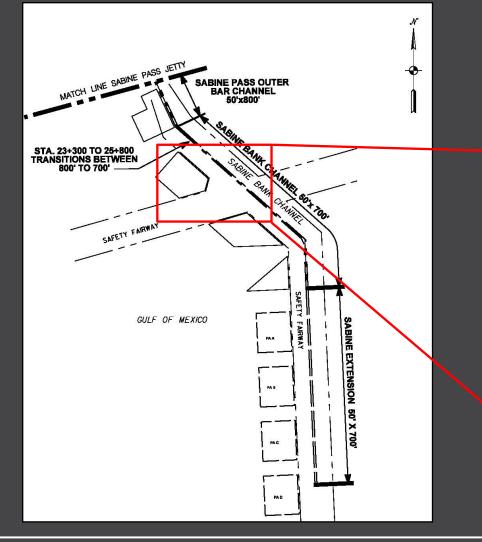
UNCLASSIFIED

US Army Corps of Engineers • Engineer Research and Development Center

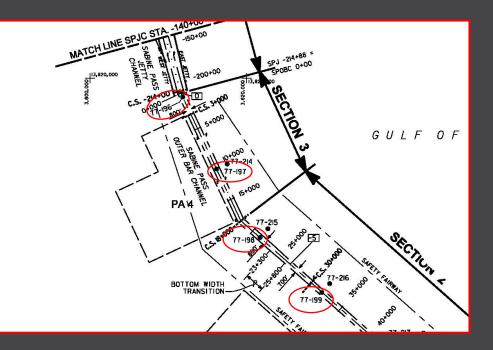
CHANNEL SAMPLING – TWO APPROACHES *NEW* USE PROJECT GEOTECH BORINGS FOR STUDY DESIGN

UNCLASSIFIED

STANDARD


- View the ship channel by length
- Divide the length into segments (i.e., dredge material management units, DMMUs)
- Sample in each DMMU
- Uniform distribution

REPRESENTATIVE


- Treat the ship channel in total
- Review geotechnical borings
- Group borings by composition and spatial distribution
- Span a range of textural types
- Sample in each major boring composition area

REPRESENTATIVE SAMPLING GEOTECHNICAL INFORMATION – HORIZONTAL (X/Y AXIS)

UNCLASSIFIED

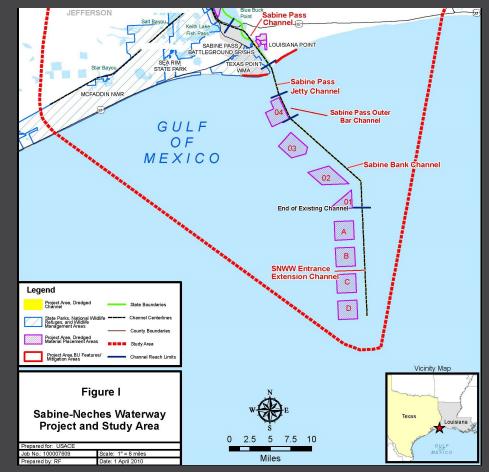
Select borings within the footprint of the new ship channel

US Army Corps of Engineers • Engineer Research and Development Center

SELECTION OF LOCATIONS - GEOTECHNICAL

MAIN SHIP CHANNEL = 4 SAMPLES, GROUPED BY COMPOSITION

Sample Number	Boring Designation	CH*= Clay w/ High Plasticity	CL*= Clay (low plasticity)	ML* = Inorganic Silt/Fine Sand	SM* = Silty Sands/Sand Silt Mix
1	77-209	10	20	Х	80
2	77-204	100	Х	Х	Х
3	77-199	Х	50	Х	50
4	3ST-17	100	Х	Х	Х


* Unified Soil Classification System (USCS)

US Army Corps of Engineers • Engineer Research and Development Center

GEOTECHNICAL SELECTION OF LOCATIONS INTEGRATING DREDGE PRISM and GEOTECHNICAL INFORMATION

UNCLASSIFIED

- 35 miles of ship channel between the entrance channel extension and north end of Sabine Pass Channel Segment
- 4 channel locations selected
- Each location was a composite of equal volumes of material from left and right sidewall and center of the main channel

= Estimated sample location

US Army Corps of Engineers • Engineer Research and Development Center

SEDIMENT SAMPLING RESULTS

UNCLASSIFIED

Sediment composition did <u>not</u> vary widely along the channel

Sample ID	USC Group Symbol	USC Group Name
SNWWNew-01	СН	Fat Clay with Sand
SNWWNew-02	СН	Fat Clay with Sand
SNWWNew-03	СН	Fat Clay
SNWWNew-04	СН	Fat Clay

US Army Corps of Engineers • Engineer Research and Development Center

CONCLUSIONS REPRESENTATIVE SAMPLING WAS COST EFFECTIVE, TECHNICALLY DEFENSIBLE AND GAINED REGULATORY ACCEPTANCE

UNCLASSIFIED

➢ Only 4 samples were needed to characterize ~35 miles of ship channel
➢ Developed the approach cooperatively with EPA R6 → regulatory buy in
➢ Technically defensible

➢Cost effective

Follow-On

- Ocean placement required three additional phases of work:
 - Tier 3 biological testing and suitability determination for ocean disposal (Montgomery & Bourne 2020)
 - STFate modeling to support the development operational guidance disposal (Montgomery & Bourne 2020)
 - Development of operational guidance for ocean disposal of new work sediments (Montgomery et al 2021)

ACKNOWLEDGEMENTS

UNCLASSIFIED

 ERDC Project Team (authors, team leads and their teams): Justin Wilkens, John D. Farrar, Al Kennedy, and Anthony Bednar
USACE Galveston District
Non-Federal Sponsor, Sabine Neches Navigation District
EPA Region 6 Ocean Dumping Program

QUESTIONS???

US Army Corps of Engineers • Engineer Research and Development Center