Innovative Approaches for Assessing Post-Dredge Sediment Data and Residuals Management Decision Making on the Grasse River

Presented by Adrianne Constant Chuck Guest, Paul LaRosa, and Chris Gardner

July 2022

Remediation Project Overview

Project Challenges

- Demanding Construction Schedule
- Sediment Cleanup Objectives
- Quality Control
- Need for Expedited Agency Stakeholder Review

Dredge Verification Overview

• 77 Dredge Management Units (DMUs)

Example Survey Verification Figure

Post Dredge Target Locations① Post-Dredge Verification (V)Average Elevation Difference Relative

to Target Cutline (10x10 Grid - inches)

- > 3" Above Target Elevation
- > 0 to 3" Above Target Elevation
- At or Below Target Elevation
- Excluded Cells (see Note 4)

Summary Statistics: DMU-A63

Post Dredge Elevation Relative to Target Cutline	Percent of Area (rounded)	Specification Requirement	
> 3" Above Target Elevation	0 %	0 %	
> 0 to 3" Above Target Elevation	0.3 %	<= 5 %	
At or Below Target Elevation	99.7%	>= 95 %	

Post-Dredge PCB Sampling Verification

- Sampling density: 8 cores/acre
- Re-dredging was required if the DMU average for a 6-inch interval exceeded the project cleanup criteria
 - Re-dredge prisms targeted the sampling locations causing the exceedance
 - Delineated using Thiessen polygons
 - Not required where the previous dredge pass encountered high subgrade (e.g., hard clay or rock)
- Once PCB levels were met, dredging for a given DMU was complete and backfill was placed

On-Site Laboratory

- Pace Analytical Services, LLC
- Dedicated staff
- Quality controls
- Results reported within 24 to 48 hours
- 2019 to 2021:
 - ~2,000 sediment samples
 - >500 locations

Innovations in Data Management

- Anchor QEA developed customized applications to enable automated data loading, quality review, and reporting
 - Field data: sample IDs, COCs, and field measurements
 - Lab data: analytical results, data validation, and data reporting
 - Significantly reduced data processing time and critical to ensuring high-quality data

Example PCB Verification Figure

EG	END:			
Post	t-Dredg	e Sample Lo	cations	
Sam	ple Typ	es .		
0	Post-D	redge Verifica	tion (V)	
Ť	2020 E	redge Manag	ement	Jnit
-	2019	redge Manag	ament	Init
Tot:	PCB	Conc. (ma/ka)	21111
	0 - 1		,	
	> 1 - 5			
	> 5 - 1	0		
	> 10 -	50		
	> 50			
Re-I	Dredge	Depth (in)		Core Depth
	1.6	2 cp (,		(inches)
	7 - 12			0
	13 - 18			12
	19 - 24			18
	25 - 30			- 24
-	> 30			- 30
7.3	Compl	-		36
	Compi	BL		
	Grasse	River transec	ts	
	Ver	ification Loca	ation Co	unts
	Sample	ed Locations		7
	Aband	oned Locations	l a	0
	Locatio	ons in Clay/Bedr	rock	0
	Locatio	ons >10 mg/kg	at any de	pth 2
	Total C	ompliant Locati	ions	4
	Backfil	Locations		NA
	Re-Dre	dge Locations		3
		Total PCR (erage	
		IOTAL PCD (I	7 10	
		6 - 12"	1 99	
		12 - 18"	1.33	
		18 - 24"	ND	
		24 - 30"	ND	
		30 - 36"	ND	
	1	50-50	NU	1

36 - 42"

42 - 48"

NA

NA

Example PCB Verification Summary Table

Core ID	Depth	TPCB (mg/kg)	Area (sqft)	TPCB x Area	Core ID	Depth	TPCB (mg/kg)	Area (sqft)	TPCB x Area
A65-V-1	_	22	4521	99455	A65-V-1		0.04	4,521	190
A65-V-2		0.7	4016	2811	A65-V-2		0.04	4,016	169
A65-V-3		32	4687	149990	A65-V-3		0.30	4,687	1406
A65-V-4	0-6"	0.04	6167	259	A65-V-4	12-18"	0.04	6,167	259
A65-V-5	1	0.04	5858	240	A65-V-5		0.04	5,858	234
A65-V-6		0.8	5161	4128	A65-V-6		0.04	5,161	206
A65-V-7		0.07	5809	378	A65-V-7		8.4	5,809	48796
Total 36,218			257261	Total 36,218			51261		
DMU Average (0-6") (mg/kg)			7.10	DMU Average (12-18") (mg/kg)				1.42	

Core ID	Depth	TPCB (mg/kg)	Area (sqft)	TPCB x Area	Core ID	Depth	TPCB (mg/kg)	Area (sqft)	TPCB x Area
A65-V-1	-	0.04	4,521	190	A65-V-1		0.00	4,521	0
A65-V-2		0.04	4,016	173	A65-V-2		0.00	4,016	0
A65-V-3		7.1	4,687	33279	A65-V-3		0.00	4,687	0
A65-V-4	6-12"	0.04	6,167	253	A65-V-4	18-24"	0.00	6,167	0
A65-V-5		0.04	5,858	240	A65-V-5		0.00	5,858	0
A65-V-6		0.04	5,161	212	A65-V-6		0.00	5,161	0
A65-V-7		6.5	5,809	37759	A65-V-7		0.04	5,809	238
Total 36,218		72105		•	Total	36,218	238		
DMU Average (6-12") (mg/kg)			1.99	DMU Average (18-24") (mg/kg)				0.01	

10

Certification Packages

- Developed for each DMU
- Summarized survey and PCB verification data for each dredge pass
- Documented compliance with project requirements
- Standardize packages supported efficient reviews
- Similar tools, automated processing, and certification packages developed for cap and backfill verification

Dredging Completion

- DMUs approved after:
 - First dredge pass: 26 (11.7 acres)
 - Two dredge passes: 40 (26.7 acres)
 - Three dredge passes: 11 (9.6 acres)
- 139 individual rounds of PCB verification evaluations
 - GIS/Python processing: ~5 minutes or less
 - Automated tools also developed for survey processing
 - Significant reduction in processing time
 - Consistent and high-quality verification packages

Keys to Success

- An aggressive schedule was successfully maintained throughout construction
 - ~220,000 cy was dredged at an average rate of 740 cy per day
 - Engineered cap placement: 258 acres
- Successful execution was achieved through early planning and focused coordination between the project team and laboratories
- Customized tools to automate data loading, quality controls, and reporting were critical in the generation of consistent high-quality deliverables, allowing for near real-time residuals management decisions
- Close coordination with the agency team throughout the design and construction was critical in establishing guidelines and achieving efficient decision making

Questions?

Adrianne Constant 518-886-0635 aconstant@anchorqea.com