Why Vibracore Sediment Acquisition Monitoring is Being Considered at More Sites for Remedial Design

Ongoing Refinements to V-Sam Technology 2022 WEDA Dredging Expo July 25–28, 2022 Houston, Texas Connor Lamb, *Teal Dreher, Anthony Cerruti, Amber Lutey*

Topics

Sediment Characterization for Remedial Design

- Elevation of Contamination
- Accuracy: Removal vs. Dredging

Vibracoring

- Conventional Vibracoring
 - Uncertainty Elevation of Contamination (EOC)
- V-SAM Vibracoring
 - Equipment incremental recovery
- V-SAM vs. Conventional Vibracoring
- Ongoing Refinements
 - Updated Equipment and Second System Development
 - Field Observations and Adjustments

Sediment Characterization for Remedial Design

Elevation of Contamination

Elevation of Contamination (EOC)

- Collect a sample every in-situ foot increment of core
- Send samples to lab to test for ROD chemicals
- EOC "Elevation of Contamination" is deepest sample above criteria

Concentration > criteria

Concentration < criteria

Elevation of Contamination

Accuracy—Removal vs Dredging

Accuracy Considerations

RTK – GPS Positioned Excavator Placement of the Bucket within +/- 4 Inches

Excavator Dredge with RTK GPS – based system for accurate bucket positioning

Conventional Vibracoring

>>> Elevation of Contamination

Vibracoring

EQUIPMENT

- Aluminum or plastic tubes
- 5' 20' long
- Vibrating head attached to top of tube
- Core catcher at bottom of tube

METHOD

- Position tube on sediment bed
- Activate vibratory head
- Advance core tube into sediment
- Retract tube and process

DOF

Core Recovery Parameters - %R

L = Recovered LengthH = Driven LengthS = Headspace

Percent Recovery %R = (L/H)x100

Range of %R ~50% to 100%+

- Material type
- Methods
- Equipment

Figure 3. Bottom loss during retrieval.

Example of %R Stretch Method

COC_{max} = Deepest contamination measured in core tube. DOC = In-Situ Depth of Contamination,

Example Interpretation If COCmax = 6.5'

- 100%R DOC = 6.5'
- 70%R DOC = 9.3'
- 50% R DOC = 13'

Vibracoring with V-SAM

Sediment Acquisition Monitoring (V–SAM)

V–SAM Equipment

DOF

DOF

16

Core Acquisition Log

Ongoing Refinements

Equipment Contractor Optimization

- Total of 3 projects
- Over 140 cores
- Contractor tweaks and modifications

Field Observations and Adjustments

- V-SAM was found for real-time adjustment during core advance to improve sediment acquisition and limit excess recovery:
 - Eliminate freefall of the coring system in very soft sediment
 - Advance the core slowly in soft sediment with managed vibration to improve collection of sediment into the core
 - Limit application of high energy vibration in dense sands and gravels to help limit over-acquisition or %R>100

23

Questions? DOF

