

Ohio DM Reuse To GO or To GROW

Corry Platt, CEP WEDA Midwest, March 2024

Partners and Participants

BLUF...Bench-scale Outputs & Recipes

APPLICATION	FINDING
Brownfield Cap / Cover	When compacted meets CERCLA landfill cover and exceeds 1.00E-05 cm/s hydraulic conductivity.
General site fill	When compacted has suitable strength for beneath asphalt parking lots.
Engineered fill	With 3% cement added has suitable strength for single story building foundation soil.
	With 7% cement added has suitable strength for multi-story building and general purpose roadways foundation soil.
	With 10% cement added has suitable strength for interstate roadway foundation soil.
Turf grass	Blend site soil with 30 to 70% dewatered sediments for sod or seeding with fescue.
Mechanical blending	Three passes with rear-tine tiller resulted in a uniform blend of sand, compost, and dewatered sediment initially laid in layers.

APPLICATION	FINDING
Ecological restoration	Blend site soil with 50 to 100% dewatered sediments for seeding with restoration seed mix.
Agricultural—Corn	Blend site soil with 10% dewatered sediments for corn. Amending typical farm soil with dredged material produced crop with increased biomass, increased yield (additional ears), and shorter time to reproductive stage. Growing corn in 100% dredged material reduced germination, height, survival, & no ears.
Agricultural— Soybean	Blend site soil with 20% dewatered sediments for soybeans. Amending typical farm soil with dredged material produced crop with increased biomass and tallest average height.
Amendment— Compost	Blending with 5% compost tended to increase plant growth.
Amendment— Acidifier	Incorporating acidifier tended to reduce seed germination and plant growth.

Findings are laboratory study based—consult Engineer-of-Record, Agronomist, Agricultural Extension Office or other pertinent professional to tailor findings to specific application and individual site conditions.

BLUF...Field Demonstration

Dredged Material as a Fertilizer Equivalent

- Balanced phosphorus across fields using thin-application of Toledo Harbor dredged material
- Maintained Certified Organic Field status
- Equivalent yields
- Lessons
 - Receiving field selection obstructed by pre-existing excess fertilizing
 - Weed seed & compaction concerns
 - Ag equipment \Leftrightarrow Civil equipment
 - Seasonal application (frozen ground)

CT Platt, WEDA Midwest, March 2024

Advancing with Academia

Megan Rua – Wright State University

- Ecological Restoration (Journal)
 - The use of dredged sediments as a soil amendment for improving plant responses in prairie restorations¹
- Agroecosystems, Geosciences & Environment (Journal) pending
 - Evaluating corn, tall fescue, and canola growth on sediments dredged from the Lorain Harbor ¹
- Sustainable Agriculture and Environment (Journal)
 - Dredged sediments contain potentially beneficial microorganisms for agricultural and little harmful cyanobacteria
- Grants
 - Investigating the feasibility of Black River dredged sediment blends as farm soil amendment [2021]
 - Investigating the feasibility of Black River dredged sediment blends for ecological restoration [2022]¹

Angelica Vazquez-Ortega – Bowling Green State University

- Environmental Quality (Journal)
 - Assessing the Effects of Lake-Dredged Sediments on Soil Health: Agricultural and Environmental Implications on Northwestern Ohio
- Grants
 - Assessing dissolved reactive phosphorus sequestration onto farm soils amended with Lake Erie dredged sediments: implications on hydrological budgets and HAB occurrences [2022]
 - Strategic positioning plan for lake sediments as a specialty crop amendment [2022]
 - Beneficially using dredged material as farm amendment to improve soil health and crop yield: a farm demonstration project [2022]¹
 - Investigating the feasibility of Black River dredged sediment blends as farm soil amendment [2021]
 - Dynamics of microbial communities in agricultural soil amended with dredged material [2018]
 - Dredged material blended with organic rich soils to amend farm soils [2018]
 - Dredged material benefits for crop production [2018]

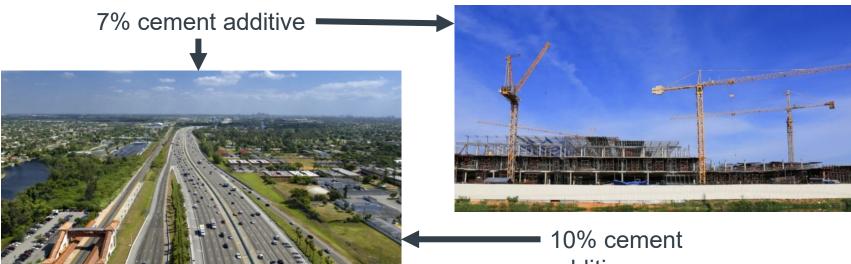
¹ C. Platt, Co-Investigator

Residual Solids Evaluation (RSE)

What

- Practical Reuse Applications Focus
- Built upon studies-by-others yet customizing to Black River local market
- Plant survival & growth
 - Partnered with Universities BGSU & WSU
 - Mirror and expand other port's dredged material reuse in agricultural crop production
 - Corn, soybean
 - Expand into agriculture-related markets: sod, fescue, restoration mix
- Engineered Fill
 - Methods in general conformance with ASTM

Engineered Fill So what? What does it all mean?


Untreated dredged material (as-is)

3% cement additive

Final acceptance of soil for use on any type of project is at the discretion of the project Engineer of Record

CT Platt, WEDA Midwest, March 2024

additive

RSE – Greenhouse Studies

Consumable Soil reuse – sod, turf, _____ fescue, restoration seed mix trials

Agricultural crop reuse – Corn, soybean trials

University Studies Overview

BGSU

- Investigators
 - Dr. Angelica Vazquez-Ortega
 - Margaret Rettig (undergrad research)
- DM & FS ratios
- Compost amendment
- pH adjustment / soil acidifier
- Corn, soybean, sod grass
- Germination & Growth
- Aboveground & below ground Biomass – three test species

WSU

- Investigators
 - Dr. Megan Rua
 - Maureen Roddy (undergrad research)
- DM & FS ratios
- Plant-based soil prep (canola)
- Corn, fescue, restoration mix
- Germination & Growth
- Aboveground & below ground Biomass
- Corn lifecycle (ears)
- Restoration mix diversity

BGSU Top Take-Aways

- DM improved growth in both corn and soybeans
- Treatments with compost tended to perform better...ones with acidifier tended to be less successful.
- DM did not hinder sod grass growth

- 10 DM : 85 FS : 5 Compost
 - best for corn...tallest and greatest
 above & below ground biomass

• 20 DM : 75 FS : 5 Compost

- Best for soybeans...highest average height and greatest above & below ground biomass
- 70, 50, & 30 DM are similar for sod survival, growth, biomass

WSU Top Take-Aways

- Corn grown on DM+FS produced additional ears suggesting higher yield (than commercial hybrids)
- Corn grown on Lorain DM+FS reached reproductive stages **faster than** Toledo fresh or weathered DM + FS.
- 100% DM was not suitable for corn (reduced germination, height, survival, & no ears)

- 50 DM : 50 FS yields greatest diversity for restoration purposes, yet 70 & 100% yielded high diversity suggesting these ratios are suitable for restoration applications with limited or no blending
- 30 DM : 70 FS ideal for canola
- 70, 50, & 30 DM are similar for fescue

Farm Demonstration – 10 acres

- Mechanically dredged, hydraulically offloaded and gravity dewatered fine-grained organic-laden sediments from Toledo Harbor / Maumee River were used.
 - ~80 ppm of Phosphorus (Mehlich 3 method)
- 500 tons of dewatered dredged material were excavated, transported, and applied to three fields at different rates with a fourth field as a control.
 - Target: 40 ppm of Phosphorus (Mehlich 3 method) after tilling
- Terragator 2505 with Tebbe Box mechanically broadcast thin layer of dredged material at:
 - Corn: 40 tons DM/ac ¼ inch
 - Corn: 80 tons DM/ac $-\frac{1}{2}$ inch
 - Soybean: 64 tons DM/ac $-\frac{1}{2}$ inch
- access roads minimizing damage to Licensing and permitting conditions complicated agricultural fields and frozen dredged securing participants material eases excavation and
 - transportation...reduces cost!

Work with Nature...cold winter freezes

Agriculture Incubation Foundation

TOLEDO I LUCAS COUNTY PORTAUTHORITY

40 tons DM/ac 3.6 acre field

2.4 acre field

80 tons DM/ac 3.6 acre field

64 tons DM/ac 1.2 acre field

Corn

Corn 0 tons DM/ac

Corn

Soybean

...Future Opportunities

- Soil has commercial value and is consumed inducing recurring supply needs
 - Opportunity for BUDM market
- Topsoil as a consumable product
 - Greenhouse Growers
 - Sod farmers
 - Ecological restoration
- Topsoil as a commodity-dirt brokers
 - Find or Get Rid of Fill Dirt for Free DirtGeo
 - Joe Dirt about-us (444dirt.com)
 - Fill Dirt | Dirt Removal | Dirt Delivery | Dirt Broker | Dirt Hauling | Dirt Cheap Cincinnati Ohio
- Two perceived waste streams (fine-grained dredged material and manufactured sand) can make a marketable, beneficial reuse product comparable in price to imported natural soil

Discussion

Corry Platt, CEP Senior Principal – Sediments & Waterfront

Geosyntec Consultants, Inc. – Raleigh NC 919.656.5799 <u>corry.platt@geosyntec.com</u> <u>cpenviroadvisor@gmail.com</u> <u>https://www.linkedin.com/in/corryplatt/</u>

