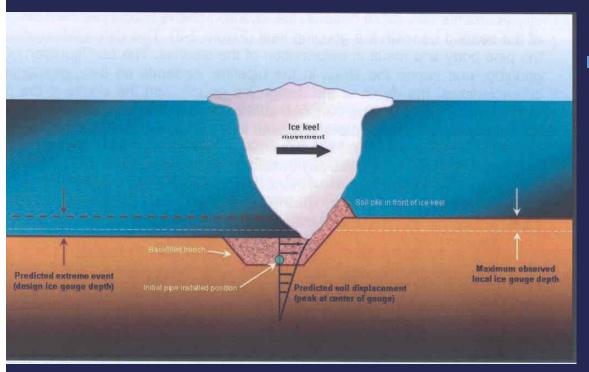
R. Randall Center for Dredging Studies Texas A&M University

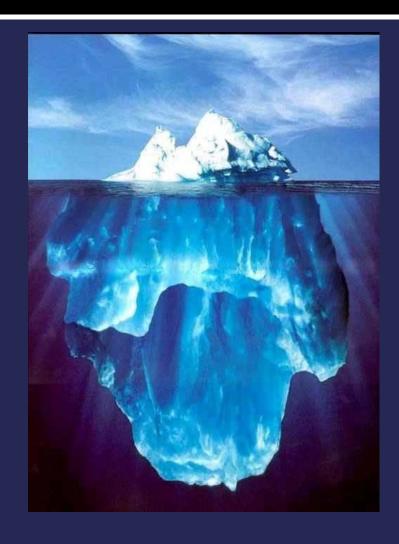
DREDGING FOR OFFSHORE INDUSTRY


OVERVIEW

- Glory (Caisson) holes for subsea installations
- Pipeline trenches
- Deep ocean mining
- LNG ports & ship channels
- Summary

White Rose Glory Hole Excavated with Vasco de Gamma (Jen de Nul)

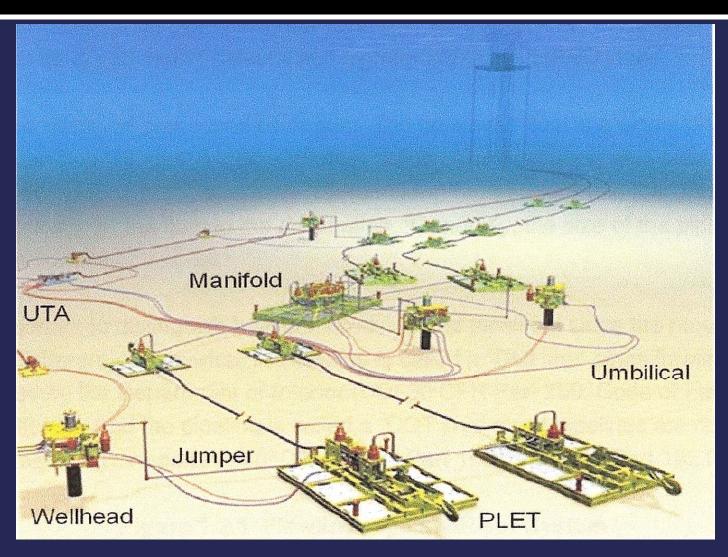
Ice Gouge



- Ice Gouge
 - o 20 m water depth
 - 100 yr gouge depth1.3 m
 - 20 m to platform
 - 100 yr gouge depth3.65 m
 - Water depth > 20 m
 - 100 yr gouge depth
 - 4.35 m

ICEBERGS & ICE KEELS

Icebergs are a floating mass of freshwater ice (http://www.solcomhouse.com/icebe rq.htm)


- Typical Arctic icebergs:
 - 45 m (147.6 ft) tall
- 180 m (590.4 ft) long. About 87.5 % of the iceberg is below the water and is called an ice keel.
- Icebergs the size of a small house are called bergy bits
 - 1-4 m (3.3 13.1 ft) in height
- 5-14 m (16.4 45.9 ft) in length.
 Smaller icebergs are called growlers:
 - less than 1 m in height and less than 5 m in length.
- Larger icebergs are found in the North Atlantic.

Example Subsea Layout

Subsea Layout (manifold, umbilical, Pipeline End Termination (PLET), Jumper, Umbilical Termination Assembly (UTA)

REMOTELY OPERATED DREDGE FOR DIGGING TRENCHES (ALLSEAS' DIGGING DONALD WWW.ALLSEAS.COM)

Digging Donald

Length

17.7 m (58 ft)

Width

9.6 m (32 ft)

Height

6.7 m (22 ft)

Maximum water depth

400m (1,312 ft)

Maximum speed

500 m/hr

Installed power

1,000 kW (1,341 hp)

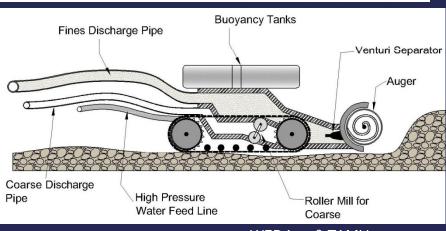
Maximum pipeline diameter

Trenching 42" OD

Jetting 48" OD

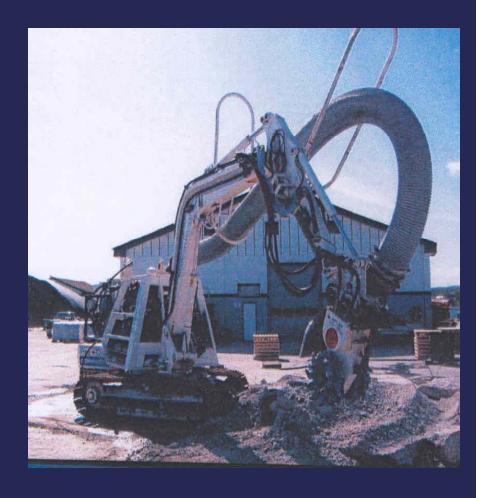
SELF PROPELLED CUTTER SUCTION PIPELINE DREDGES NEEDED FOR ARCTIC SHORT DREDGING PERIODS




TRAILING SUCTION HOPPER DREDGES

Cristobal Colon Capacity: 63,000 yd³ Digging depth: 508 ft

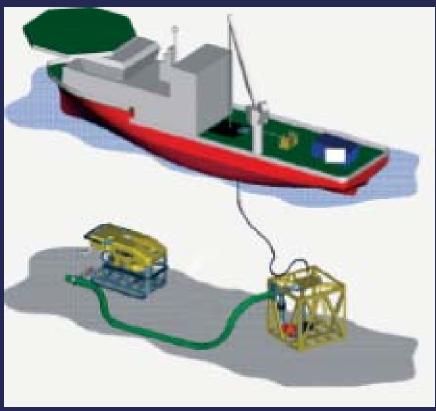
NEW CONCEPT REMOTELY OPERATED DREDGE SYSTEM



- Ability to work free from the constraints of trailing suction arms, winch lines, anchor handling equipment, and ladder pumps.
- Reduced mobilization costs and transit time, unhindered traffic flow, and discharge pipeline maintenance.

Pro Dive Scanmudring: Scanmaskin Excavator

Developing Technology


(van Duursen and Winkelman, Damen Dredging Equipment)

ROV Dredges (GTO Norsk)

(Courtesy of Norsk Hydro)

Courtesy of GTO

Materials Offload Facility (MOF) to Support Operation of LNG Plant

- Two options:
 - Open coast *(selected)
 - River Inlet

Future MOF and Tug Pens

Trestle

Future LNG
Loading Platform and Berth

Property Boundary

The Site

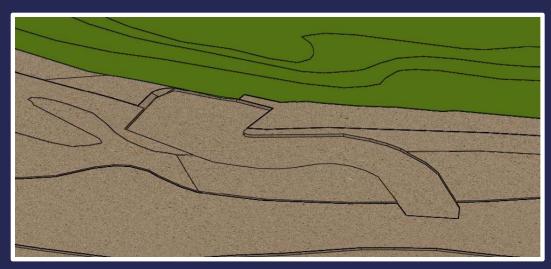
Courtesy of Chevron

- Design Criteria
- The MOF and tug pen are to be designed for the following design criteria:

Facility design life
 50 year

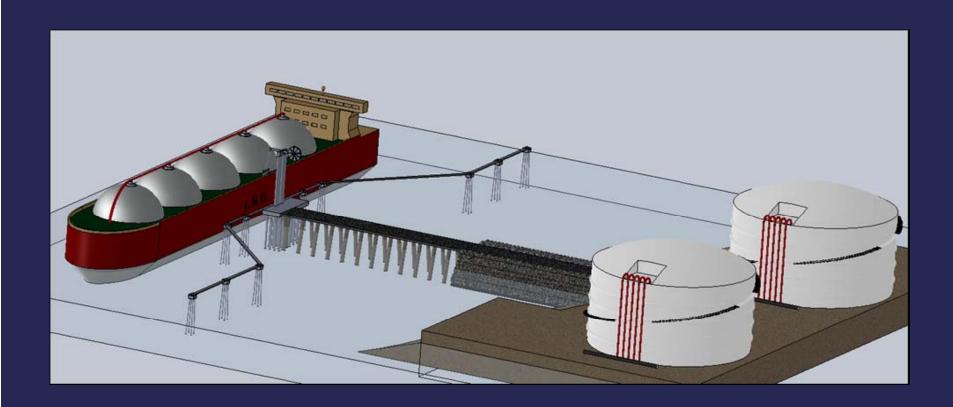
2. Shore protection works: 200 year

3. Tug pen protection: Hs < 1.om at 200 year


4. MOF quay serviceability: 1 year

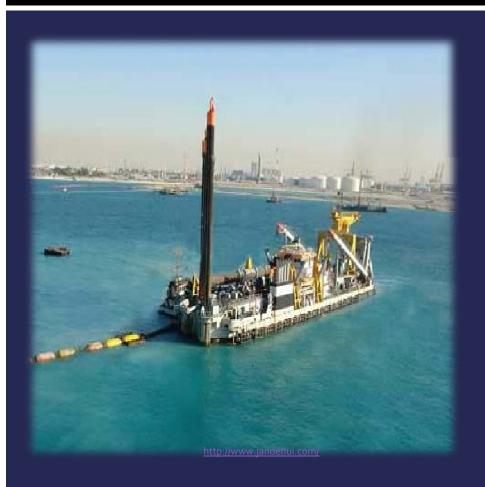
5. Geotechnical stability factor of safety: FS > 1.5

Dredging


- The total dredging will result in 940,000 cubic meters of total material removed
- Assumed cutter dredging rate is 833 cubic meters per hour (20,000 per day)
- Assuming a continuous operation approximately 1 month will be required on site to complete dredging operations
- Real competition time based on a 5 day dredging work, 2 day maintenance schedule it will take 1.5 months to complete the entire dredging process

Dredging Removal Ra	ate Break	Down
Total soil removed	940,000	m3
Dredging rate	20000	m3/ day
Total Hours required	1128	hours
Total days Required	47.0	days
Total Months Required	1.7	months
*** Above rates assume CONTINUOUS operation		
Total Weeks Required	9.4	weeks
Total Months Required	2.4	months

LNG Terminal



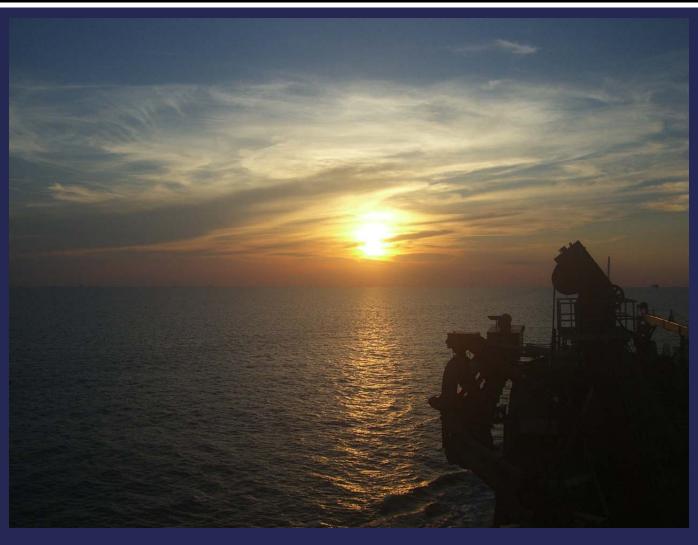
Dredged Material Placement Area

- Located NW of the Berth
 - South of recommended shipping track
- 2.25 Square Nautical Mile area
- Maximum PumpingDistance = 8.4 NauticalMile
- Minimum Pumping
 Distance = 6.9 Nautical
 Miles
- 2.6 meter elevation if evenly distributed

Dredging

- Cutter Suction Dredge
 - 20 Million Cubic Meters
 - 48% Calcareous Rock
 - 52% Compacted Sands
 - Typically used for newly excavated channels
 - 36 inch design dredge type
 - 13 month dredge time
 - Spud Carriage
 - Pumps sediment to disposal area via pipeline
 - 95% Floating Pipeline, 5%
 Submerged Pipeline
 - 1 Booster Pump required

Deep Ocean Mining


Technology Gaps and Limitations

- Trailing suction hopper dredges operated by Jan de Nul, Boskalis, Van Oord, and others can excavate in the 50 m (164 ft) water depth and have hopper capacities of 11,000 m³ (14,378 yd³) and greater.
- US trailing suction hopper dredges have to increase the dragarm length to reach the caisson hole depth, and the technology is available. Approximate cost \$500K.
- A self-propelled cutter suction dredge is possible, but no current self-propelled cutter suction dredge can excavate below 35 m (115 ft) water depth. The technology exists to increase the length of the ladder, length of spuds, length of dredge hull, and the support structure for the ladder extension at a cost of approximately \$500K.
- ROV dredges would require increased size/power and a long pipeline with booster pumps located along the pipeline to the placement areas. ROVs could be helpful in removing boulders or other debris.

SUMMARY

- Caisson holes for subsea installations
 - Some hopper dredges can reach depths > 100 ft (30 m), but most have to make modifications
- Pipeline trenches
 - Trenches for pipelines needed for protection from ice scour in Arctic.
 - Short dredging season in Arctic
 - Boulders are issue in Arctic
 - Depth of trenches is ~4 m (13 ft) and ROVs are typically capable of 2 m (6 ft)
 - Cutter suction dredges typically need to be modified to excavate deeper than 30 m (100 ft)
- LNG ports & ship channels
 - Dredging ports and entrance channels for remote locations to accommodate LNG facilities
- Deep ocean mining
 - Pumping and separation facilities are being developed to mine minerals from deep ocean water

THANKYOU & QUESTIONS

WEDA 33 & TAMU 44