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Marine Pipeline Installation

0 Marine pipelines can installed using a towed pipeline plough that
simultaneously cuts a trench and lowers the pipeline

o Backfill of the trench, if required, can be performed with an additional
pass along the pipeline with a backfill plough
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AMP500 Pipeline Plough
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AMP500 Pipeline Plough
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AMP500 Pipeline Plough

o Plough blades are lowered into place

o Pipeline is lowered into cradle

DEEPOCEAN



AMP500 Pipeline Plough
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AMP500 Pipeline Plough

0 Pipeline slides through cradle as plough is pulled forward

o Plough rides on skids at front, blade at rear
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AMP500 Pipeline Plough

0 Pipeline falls into cut trench behind plough

o Trench may be backfilled by a second pass using a backfill plough
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AMP500 Pipeline Plough

0 Ploughs tend to be very large
0 AMP500 is approximately 10 mx 12 m x 22 m and 200 t
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Support Vessel Maersk Advancer
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Problems
e

0 Under certain conditions, the forces required to tow the plough can be
very high

0 Flow from the vessel props can scour the seabed, leaving the newly-laid
pipeline exposed or worse still, spanning an scour hole
o Softer sediments

o Shallow water
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Propwash-Induced Scour
-]

0 Propwash-induced scour holes undermining pipeline are evident in this
colourized sonar image
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Project Aims
-]

0 Develop predictive relationships for near-bed velocities and scour growth
as a function of:

o Vessel characteristics (e.g., speed, thrust, trim, ...)
o Local conditions (e.g., depth, soil type, ...)

0 These relationships would be used to:
0o Plan the operations so as to minimize the issue

o Enable the personnel on board the tow vessel to modify the operation as
required, based on the actual performance observed

DEEPOCEAN




Computer Modelling
-]

o Flows
o 3D Propwash model

0 Morphology
o PTM model

o Dynamically-coupled the models
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Flow Model
e
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the vessel due to turbulent diffusion
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Sediment Model
e

O

Particle Transport Model (PTM)
Developed by Coldwater

Funded by two US Army Corps of Engineers Engineering
Research and Development Center (ERDC) research programs:

o Coastal Inlets Research Program (CIRP)

o Dredging Operations and Environmental Research (DOER) Program

Commercially-available as part of the Surface-water Modeling
System (SMS) from Aquaveo
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PTM

0 PTM uses hydrodynamics from other models
0 Multiple input
o FE, FD, quadtrese, ...
o Waves, flows, ...
0 PTM was developed for application to dredging and coastal projects

0 dredged material dispersion and fate, sediment pathway and fate, and
constituent transport
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PTM
N

0 Lagrangian (particle-based)
scheme to compute the
pathways and fate of sediments

& S A I o e g
E Dredged sediment
fate modelling

o Typical application method for
PTM
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PTM
N

o Eulerian (mesh-based) calculations
of bed conditions (e.g. shears,
sediment transport, morphology,
etc.) are always performed in the
background of each run
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o Present work illustrates use of
these other capabilities
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Test Conditions for Present Case
e

0 Bed materials

. . d Rate | Depth Bollzlalrd
o fine, medium and coarse sand Bed 1 G Ly | ) |y
. Al 0 12 100
o soft, medium and hard clay T o T 12 200
A5 0 14 100
0 Water depth Fine | A7 | 0 14 | 200
Sand A9 0 24 200
Bl 200 12 100
N 12 > 24 m B3 200 12 200
B4 200 24 200
o Vessel speed A2 | 0 | 12 | 100
Ad 0 12 200
Med. Ab 0 14 100
A O > 400 m/hr Sand A7 0 14 200
A10 0 24 200
o Bollard pull B2 | 200 | 12 | 100
Soft C3 0 12 100
o 100> 200 Te Clay | -C6 | 0 | 24 | 100
D3 400 12 100
C1 0 12 100
Ml Tca [0 | 24 | 100
Y b1 | 400 | 12 | 100
Hard C2 0 12 100
Cla C5 0 24 100
Y "Dp2 | 400 | 12 | 100
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Maximum Flow Velocities
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o Typical flow pattern at the bed

o Note that the vessel has two props
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Maximum Flow Velocities
]

S lq J o Peak velocities from all the

™ simulations were used to
generate plots of maximum flow
velocity at the bed as a function
of bollard pull and water depth

o Results are unique to this case as
they take into account specific

200 -

150 - /
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characteristics of the setup
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Critical Conditions
1
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Stationary Vessel
]
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Steady Advancing Vessel
-]

Scour hole development
behind an advancing vessel
simulated using PTM
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Steady Advancing Vessel
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Scour hole development
behind an advancing vessel
simulated using PTM
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Steady Advancing Vessel
-]

Scour hole development
behind an advancing vessel
simulated using PTM

DEEPOCEAN



Steady Advancing Vessel
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Steady Advancing Vessel
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Scour hole development
behind an advancing vessel
simulated using PTM
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Steady Advancing Vessel
-]

Scour hole development
behind an advancing vessel
simulated using PTM
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Observations
e

o As the vessel proceeds along a plough line, a scour hole can develop
roughly 50 to 200 m behind the vessel

0 Generally, the scouring action of the propwash is backfilled through
deposition processes as the ship makes headway

o Depth of sediment disturbance is significantly greater than the final scour
trench depth

0 Due to sediment spreading (diffusion), this infilling does not fully equal
the scour hole excavation resulting in a net trenching that is shallower
than the initial scour hole excavation
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Maximum Scour Rate
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Bollard Pull (Te)
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Summary of Scour Rates
-]

Rate | Depth Bollard | 10 min. | 20 min. | 30 min. Avg. Max. Max.
Bed | Case (mis) (m) Pull Scour Scour Scour dz/dt dz/dt Scour
(Te) (cm) (cm) (cm) (cm/min) | (cm/min) (cm)
Al 0 12 100 50.6 96.8 139.3 4.6 5.3
A3 0 12 200 201.6 323.3 452.5 15.1 23.7
A5 0 14 100 33.1 62.1 87.6 2.9 3.5
Fine A7 0 14 200 125.1 203.9 260.7 8.7 16.7
Sand A9 0 24 200 0.5 0.9 1.4 0.05 0.05
Bl 200 12 100 46.3
B3 200 12 200 159.6
B4 200 24 200 0.5
A2 0 12 100 13.6 26.8 39.7 1.3 1.4
Ad 0 12 200 48.1 93.6 136.8 4.6 5.2
Med. A6 0 14 100 8.8 17.3 25.4 0.8 0.9
Sand A7 0 14 200 35.5 66.9 95.0 3.2 3.8
Al0 0 24 200 0.0 0.0 0.1 0.003 0.003
B2 200 12 100 115
Soft C3 0 12 100 52.4 96.9 135.7 4.5 5.7
Clay C6 0 24 100 0.0 0.0 0.0 0.0 0.0
D3 400 12 100 76.2
Med. C1l 0 12 100 8.6 16.9 25.0 0.8 0.9
Clay C4 0 24 100 0.0 0.0 0.0 0.0 0.0
D1 400 12 100 12.2
Hard C2 0 12 100 2.0 3.9 5.9 0.2 0.2
Clay C5 0 24 100 0.0 0.0 0.0 0.0 0.0
D2 400 12 100 2.7
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Conclusions
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o The scour can be backfilled by deposition as the ship makes headway;
however, the depth of sediment disturbance is significantly greater than
the final scour trench depth

0 lIrregular tow operations (e.g., occasional high thrust in shallow water) can
create conditions wherein large scour holes are generated

0 In situations where scour is predicted to be problematic, two tow vessels,
one to each side of the trench could be used with each vessel operating at
one-half the bollard pull required by the single vessel

0 The width of the predicted scour holes is generally consistent with
observed scour holes reported to Coldwater by DeepOcean

o Of the order of 20 m x 20 m across and 3 to 5 m deep
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For More Information
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Please contact:

N. J. MacDonald

Coldwater Consulting Ltd.
5510 Canotek Rd., Suite 203
Ottawa, ON

K1J 9J4

Canada

+1 613 747 2544
info@coldwater-consulting.com

www.coldwater-consulting.com
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