MODELLING OF SEABED SCOUR IN SUPPORT OF A MARINE PIPELINE INSTALLATION

N. J. MacDonald and M. H. Davies Coldwater Consulting Ltd., Ottawa, ON C. Guyatt and J. Pyrah DeepOcean 1 UK Ltd., Darlington, UK

Marine Pipeline Installation

- Marine pipelines can installed using a towed pipeline plough that simultaneously cuts a trench and lowers the pipeline
- Backfill of the trench, if required, can be performed with an additional pass along the pipeline with a backfill plough

Plough is lowered over pipeline

Mechanical arms at front and back of plough lift pipeline off seabed

- Plough blades are lowered into place
- Pipeline is lowered into cradle

Plough is pulled by support vessel, cutting trench and side-casting spoil

- Pipeline slides through cradle as plough is pulled forward
- Plough rides on skids at front, blade at rear

- Pipeline falls into cut trench behind plough
- Trench may be backfilled by a second pass using a backfill plough

- Ploughs tend to be very large
- □ AMP500 is approximately 10 m × 12 m × 22 m and 200 t

Support Vessel Maersk Advancer

Consequently, support vessels are also very large

Problems

- Under certain conditions, the forces required to tow the plough can be very high
- Flow from the vessel props can scour the seabed, leaving the newly-laid pipeline exposed or worse still, spanning an scour hole
 - Softer sediments
 - Shallow water

Propwash-Induced Scour

 Propwash-induced scour holes undermining pipeline are evident in this colourized sonar image

Project Aims

- Develop predictive relationships for near-bed velocities and scour growth as a function of:
 - Vessel characteristics (e.g., speed, thrust, trim, ...)
 - Local conditions (e.g., depth, soil type, ...)
- These relationships would be used to:
 - Plan the operations so as to minimize the issue
 - Enable the personnel on board the tow vessel to modify the operation as required, based on the actual performance observed

Computer Modelling

- Flows
 - 3D Propwash model
- Morphology
 - PTM model
- Dynamically-coupled the models

Flow Model

Propwash model

- 3D velocity fields based on jet flow assumption
- flow spreads and decays with distance from the vessel due to turbulent diffusion
- function of water depth, propeller diameter, spacing, trim and thrust
- dynamically-coupled to PTM

Sediment Model

- Particle Transport Model (PTM)
- Developed by Coldwater
- Funded by two US Army Corps of Engineers Engineering
 Research and Development Center (ERDC) research programs:
 - Coastal Inlets Research Program (CIRP)
 - Dredging Operations and Environmental Research (DOER) Program
- Commercially-available as part of the Surface-water Modeling System (SMS) from Aquaveo

PTM

- PTM uses hydrodynamics from other models
- Multiple input
 - **FE, FD, quadtree, ...**
 - Waves, flows, ...
- PTM was developed for application to dredging and coastal projects
 - dredged material dispersion and fate, sediment pathway and fate, and constituent transport

PTM

- Lagrangian (particle-based) scheme to compute the pathways and fate of sediments
- Typical application method for PTM

PTM

- Eulerian (mesh-based) calculations of bed conditions (e.g. shears, sediment transport, morphology, etc.) are always performed in the background of each run
- Present work illustrates use of these other capabilities
 - Non-cohesive and cohesive sediment transport and morphological evolution

Test Conditions for Present Case

Bed materials

- fine, medium and coarse sand
- soft, medium and hard clay
- Water depth
 - 12 → 24 m
- Vessel speed
 - □ 0 → 400 m/hr

Bollard pull

■ 100 → 200 Te

Bed	Case	Rate (m/s)	Depth (m)	Bollard Pull (Te)	
Fine Sand	A1	0	12	100	
	A3	0	12	200	
	A5	0	14	100	
	A7	0	14	200	
	A9	0	24	200	
	B1	200	12	100	
	B3	200	12	200	
	B4	200	24	200	
Med. Sand	A2	0	12	100	
	A4	0	12	200	
	A6	0	14	100	
	A7	0	14	200	
	A10	0	24	200	
	B2	200	12	100	
Soft Clay	C3	0	12	100	
	C6	0	24	100	
	D3	400	12	100	
Med. Clay	C1	0	12	100	
	C4	0	24	100	
	D1	400	12	100	
Hard Clay	C2	0	12	100	
	C5	0	24	100	
	D2	400	12	100	

Maximum Flow Velocities

- Typical flow pattern at the bed
- Note that the vessel has two props

Maximum Flow Velocities

- Peak velocities from all the simulations were used to generate plots of maximum flow velocity at the bed as a function of bollard pull and water depth
- Results are unique to this case as they take into account specific characteristics of the setup
 - Prop size, blade pitch, ...
 - Vessel trim under load
 - ...
 - Chart designed for use by onboard engineers

DEEPOCEAN

Critical Conditions

Ecoldwater

DEEPOCEAN

Stationary Vessel

Observations

- As the vessel proceeds along a plough line, a scour hole can develop roughly 50 to 200 m behind the vessel
- Generally, the scouring action of the propwash is backfilled through deposition processes as the ship makes headway
 - Depth of sediment disturbance is significantly greater than the final scour trench depth
- Due to sediment spreading (diffusion), this infilling does not fully equal the scour hole excavation resulting in a net trenching that is shallower than the initial scour hole excavation

Maximum Scour Rate

- Scour rate chart prepared for engineers on board
- To be used in conjunction
 with maximum bed velocity
 chart presented earlier

Maximum Scour Rate and Shear

Summary of Scour Rates

Bed	Case	Rate (m/s)	Depth (m)	Bollard	10 min.	20 min.	30 min.	Avg.	Max.	Max.
				Pull	Scour	Scour	Scour	dz/dt	dz/dt	Scour
				(Te)	(cm)	(cm)	(cm)	(cm/min)	(cm/min)	(cm)
Fine Sand	A1	0	12	100	50.6	96.8	139.3	4.6	5.3	
	A3	0	12	200	201.6	323.3	452.5	15.1	23.7	
	A5	0	14	100	33.1	62.1	87.6	2.9	3.5	
	A7	0	14	200	125.1	203.9	260.7	8.7	16.7	
	A9	0	24	200	0.5	0.9	1.4	0.05	0.05	
	B1	200	12	100						46.3
	B3	200	12	200						159.6
	B4	200	24	200						0.5
Med. A Sand A E	A2	0	12	100	13.6	26.8	39.7	1.3	1.4	
	A4	0	12	200	48.1	93.6	136.8	4.6	5.2	
	A6	0	14	100	8.8	17.3	25.4	0.8	0.9	
	A7	0	14	200	35.5	66.9	95.0	3.2	3.8	
	A10	0	24	200	0.0	0.0	0.1	0.003	0.003	
	B2	200	12	100						11.5
Soft Clay	C3	0	12	100	52.4	96.9	135.7	4.5	5.7	
	C6	0	24	100	0.0	0.0	0.0	0.0	0.0	
	D3	400	12	100						76.2
Med. Clay	C1	0	12	100	8.6	16.9	25.0	0.8	0.9	
	C4	0	24	100	0.0	0.0	0.0	0.0	0.0	
	D1	400	12	100						12.2
Hard Clay	C2	0	12	100	2.0	3.9	5.9	0.2	0.2	
	C5	0	24	100	0.0	0.0	0.0	0.0	0.0	
	D2	400	12	100						2.7

Conclusions

- The scour can be backfilled by deposition as the ship makes headway; however, the depth of sediment disturbance is significantly greater than the final scour trench depth
- Irregular tow operations (e.g., occasional high thrust in shallow water) can create conditions wherein large scour holes are generated
- In situations where scour is predicted to be problematic, two tow vessels, one to each side of the trench could be used with each vessel operating at one-half the bollard pull required by the single vessel

DEEPOCEAN

- The width of the predicted scour holes is generally consistent with observed scour holes reported to Coldwater by DeepOcean
 - Of the order of 20 m x 20 m across and 3 to 5 m deep

For More Information

Please contact:

N. J. MacDonald Coldwater Consulting Ltd. 5510 Canotek Rd., Suite 203 Ottawa, ON K1J 9J4 Canada

+1 613 747 2544 info@coldwater-consulting.com www.coldwater-consulting.com

