

Water-Soluble PAG's – The Environmentally Acceptable Lubricant (EAL) of the Future

June 15th – 18th, 2014

Kevin P. Kovanda, President American Chemical Technologies, Inc.

Mark Latunski, Laboratory Manager American Chemical Technologies, Inc.

So You Want to Work Within U.S. Waters?

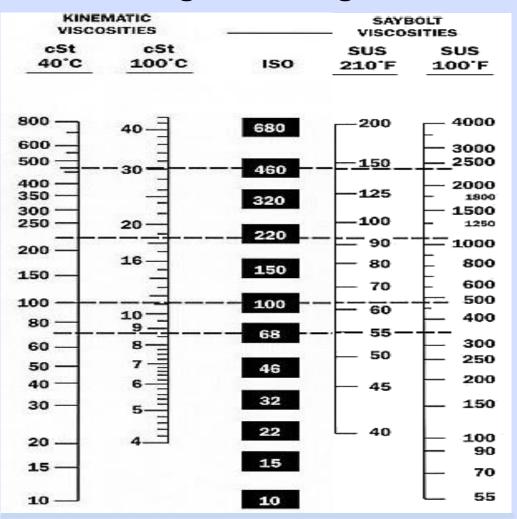
US EPA 2013 Vessel General Permit

- Effective December 19,2013
- Applicable to discharges into "waters of the United States" (Defined in CFR and CWA)
- Covers vessels greater than 79 feet in length
- Requires the use of an EAL in all oil-to-sea interfaces, unless technically infeasible
- Covers all equipment that operates below the water line of a vessel

US EPA Definition of an EAL

- Biodegradable >60% in 28 days via OECD test method(s)
- Minimally Toxic >100 mg/L LC50 for various aquatic species via OECD test method(s)
- Non-Bioaccumulative by one of multiple routes
- Exempt if certified by a recognized Eco-labeling program

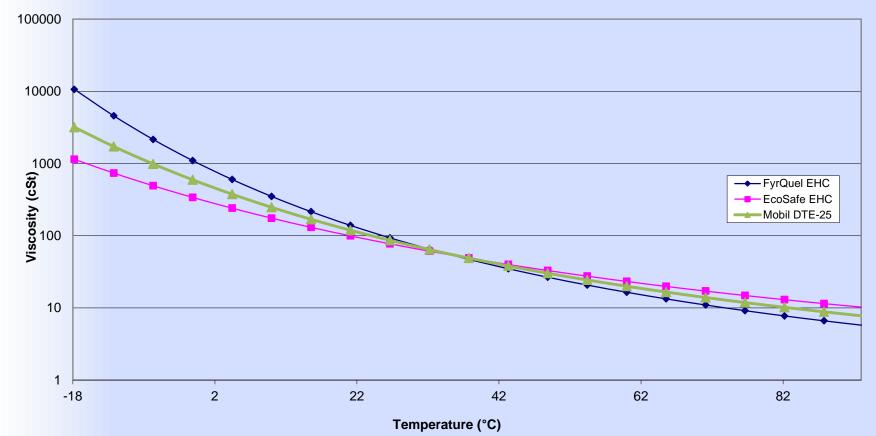
Recognized EAL Base Stocks – US EPA


- Polyglycols (HEPG)
- Vegetable Oil (HETG)
- Synthetic Esters (HEES)
- Bio-based PAO (HEPR)
- Water

Properties of PAG's

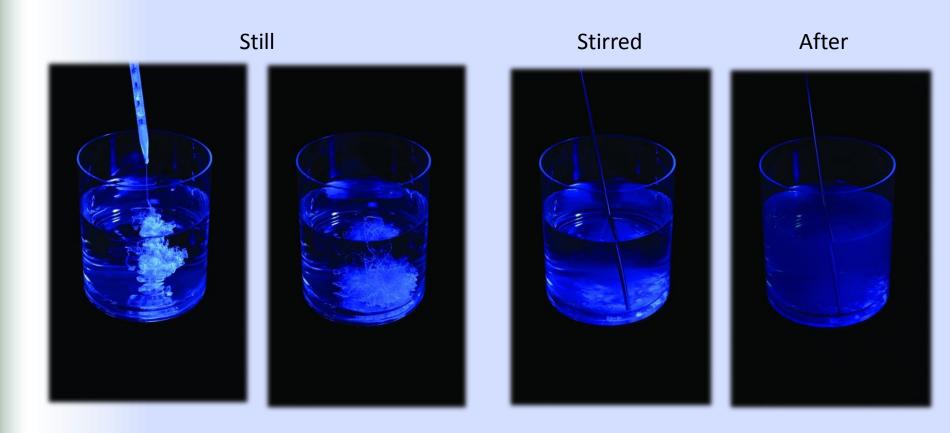
Viscosity: Increases with increasing molecular weight. Standard grades range from ISO 10 to 1000.

WS-PAG Environmental Properties

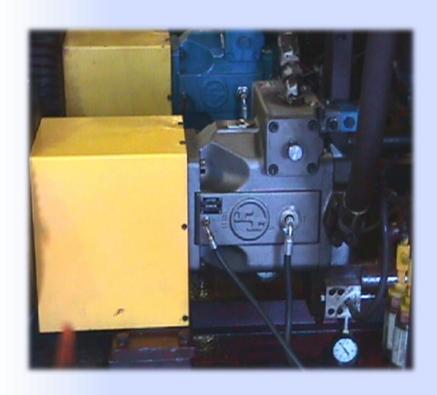


Property % Biodegradation	OECD 301B	ISO VG 10 thru 1000 > 60
Aquatic Toxicity		
- Fresh Water Species		
LC50 Daphnia magna, 48H	OECD 202	330-1,000 mg/L
LC50 Pimephales promelas, 96H	OECD 203	700-1,200 mg/L
- Salt Water Species		
LC50 Mysidopsis bahia, 96H	OPPTA 850.1035	600-1,000 mg/L
Algae Toxicity Test EC50 Green algae, 72H	OECD 201	> 1,000 mg/L
Bacteria Inhibition	OECD 224	NED
Bioaccumulation, log K _{ow}		< 3
NED - No ecological doubt		

Viscosity Index:


In general, very high VI compared to other base fluids. Values up to 400 can be reached.

Solubility:


It is possible to create PAG's with solubility ranging from complete water solubility to complete oil solubility.

Lubricity:

Excellent lubrication properties, due to high affinity of the oxygen atoms with the metal surface.

Thermal Stability: Very good response to anti-oxidants

(high-temperature applications up to 250°C

can be achieved).

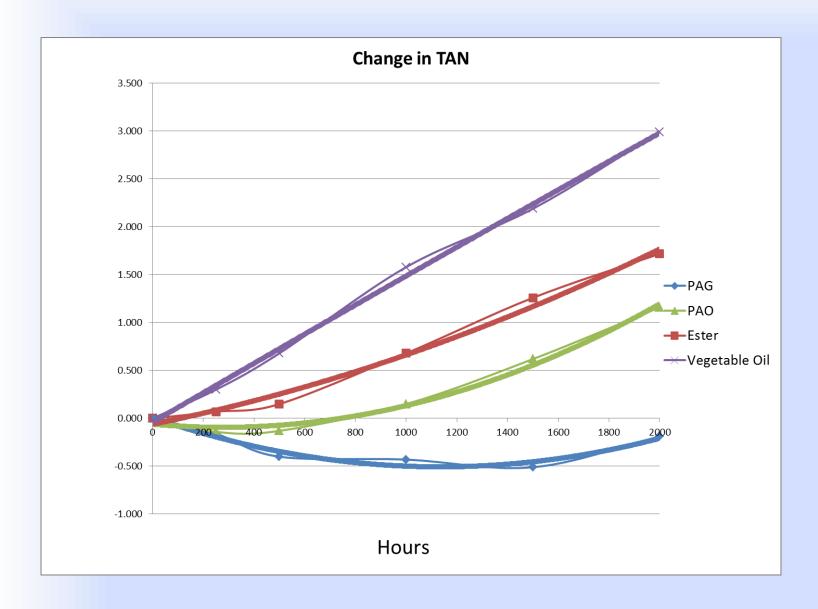
Hydrolytic Stability:

PAG's <u>do not</u> hydrolyze. Hydrolysis leads to acid formation, corrosion potential and further fluid degradation. Major advantage

over mineral oils, vegetable oils and

synthetic esters.

Hydrolytic Stability - ASTM D2619



EAL PRODUCT	Change in Acid Number - mg KOH/g	Total Acidity of the Water Layer - mg KOH
Polyalkylene Glycol - PAG	-0.01	Water Solubilized
Polyalphaolefin - PAO	-0.08	6.9
Synthetic Ester	0.83	19.37
Vegetable Ester	2.02	3.23

Fluids which are unstable to water under conditions of the test form corrosive acidic and insoluble contaminants. **75g of fluid, 25g of water**, and a polished **copper stri**p are sealed in a bottle then placed in a **200°F (93°C) oven** and rotated end-to-end at 5 rpm for 48 hrs. Reported values are Acid Number Change, Total Acidity of Water, Weight Change and Appearance of Copper Strip, and can also include Total Sediment Weight.

Modified TOST and EAL's

Modified TOST and EAL's

	TAN	Water Content (ppm)	Viscosity (cSt)
Water Soluble PAG			-
Initial	1.31	805	46.48
2000 Hours	1.12	1689	52.43
Change	-0.19	+884	+5.95
Synthetic Ester			
Initial	0.65	389	46.28
2000 Hours	2.37	758	44.94
Change	+1.72	+369	-1.34
PAO			
Initial	0.50	217	49.55
2000 Hours	1.66	624	50.50
Change	+1.16	+407	+0.95
Vegetable Oil			
Initial	0.11	602	42.21
2000 Hours	3.10	893	59.06
Change	+2.99	+291	+16.85

Low Residue: Superior deposit control over all other

base oil classes. Oxidation by-products

are soluble in the base fluid.

Varnish Formation Mechanisms

Mineral Oil: Agglomeration/Density

Esters: Polymerization

(natural & synthetic)

Polyglycol: NONE - degradation results in

low molecular weight by-products, soluble in

the PAG base stock

Typical Varnish Residues

2,500 hours @ 120°C ASTM D-943

Low Pour Points: As low as -45°C can be obtained. Low

pour point combined with high VI makes

PAG's ideal for one fluid with all-season

performance.

Thermal

Conductivity:

In general, better than mineral oils.

Better cooling characteristics.

Elastomer/Metal

Compatibility:

Compatible with all commonly used

elastomers and all metals.

Fire-Resistance: Can be formulated to pass Factory Mutual

Standard, Class 6930. Dependent on

molecular weight of PAG.

Typical Hydraulic Fluid Properties (PAG-WS)

Property	Test Method	<u>ISO VG 32</u>	<u>ISO VG 46</u>	<u>ISO VG 68</u>
Viscosity @ 40°C, cSt	ASTM D445	32.93	46.96	67.97
Viscosity @ 100°C, cSt	ASTM D445	7.13	9.88	13.91
Viscosity Index	ASTM D2270	188	203	214
Specific Gravity @ 25°C, g/cm ³	ASTM D1298	1.02	1.03	1.03
Pour Point, °C	ASTM D97	-46	-40	-35
Acid Number, mgKOH/g	ASTM D664	1.0	1.0	1.0
Rust Prevention	ASTM D665A	Pass	Pass	Pass
Copper Strip Corrosion	ASTM D130	1B	1B	1B
Air Release @ 50°C, min.	ASTM D3427	5.0	7.5	7.0
Foam Tendency, Seq. I/II/III	ASTM D892	0/0	0/0	0/0
Four Ball Wear, Scar Dia.	ASTM D4172	0.39	0.38	0.20
Hydraulic Pump Test	ASTM D7043	2.2 mg		
Eaton Pump Test	35VQ25A	Pass		

EAL Base Stock Ratings

Rating of Fluid Base Stocks

Ratings: 1 (poor) to 5 (excellent)

Property	<u>MO</u>	EAL PAO	<u>vo</u>	Syn <u>Ester</u>	WS PAG
ISO Class	HLP	HEPR	HETG	HEES	HEPG
Readily biodegradable	2	4	5	5	4
Renewable content	1	4	5	4	1
Aquatic toxicity	5	5	5	5	4
EPA "Static Sheen"	1	1	1	1	5
Bioaccumulation	2	2	2	2	5
Worker friendly	5	5	5	5	5
Hydrolytic stability	3	3	2	3	5
Chemical Stability	4	3	2	4	5
Oxidative stability	3	4	2	4	5
Seal compatibility	5	5	5	4	4
Metals compatibility	5	5	4	3	5
High-pressure performance	5	5	5	5	5
All-season performance	3	4	2	5	5
Varnishes and residues	3	4	1	4	5
Fire-resistance	1	1	4	1	4
Paint and Sealant compatibility	5	5	4	4	3
Fluid maintenance	4	4	1	4	5
Ease of Conversion (from mineral oil)		5	2	4	3
Price	5	2	4	2	2
Total Score	62	71	61	69	80

WS-PAG Advantages for Dredging/Marine Industry

- ONLY non-sheening EAL pursuant to 40 CFR435 EPA Static Sheen Test
- Hydrolytic Stability
- Non-sludge or varnish forming
- Completely water-soluble
- Acts as polymeric sponge

Oil Sheen - Black Light Photos

Oils (still)

Mineral Oil

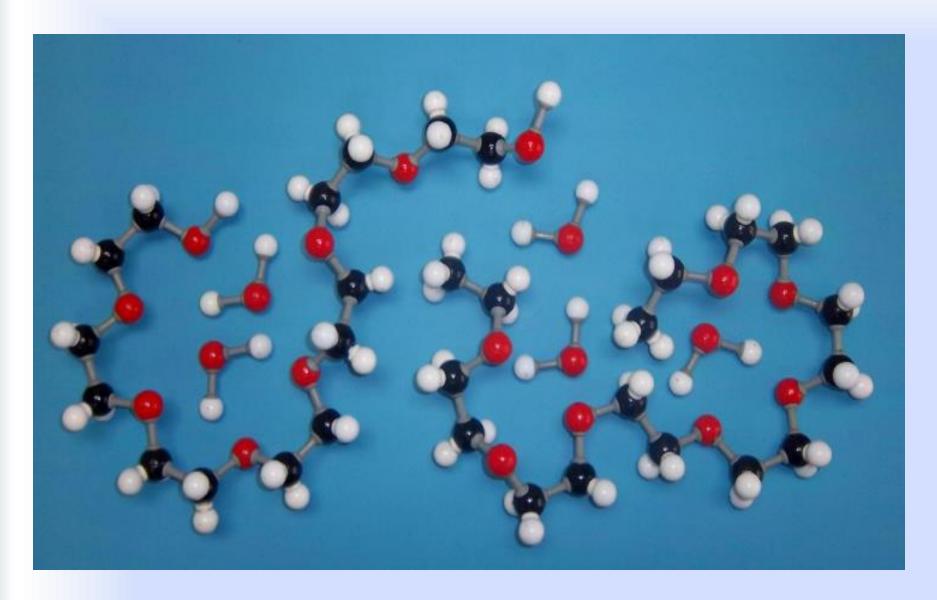
White Oil

Vegetable Oil

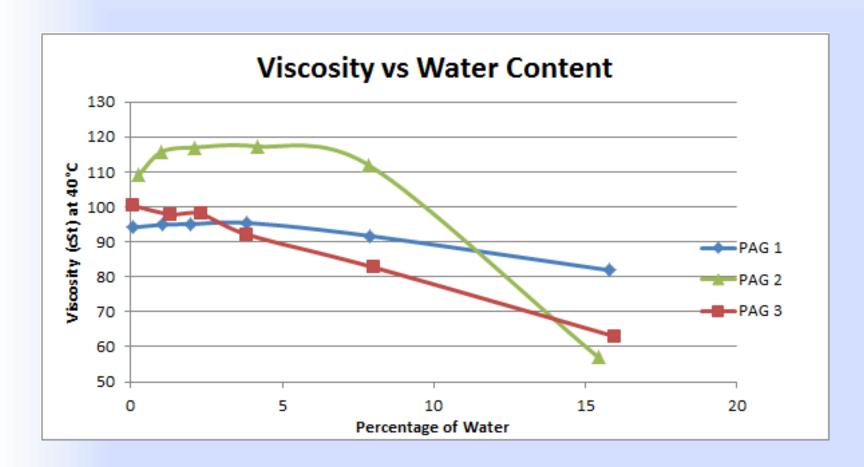
Synthetic Ester

Oils (stirred)

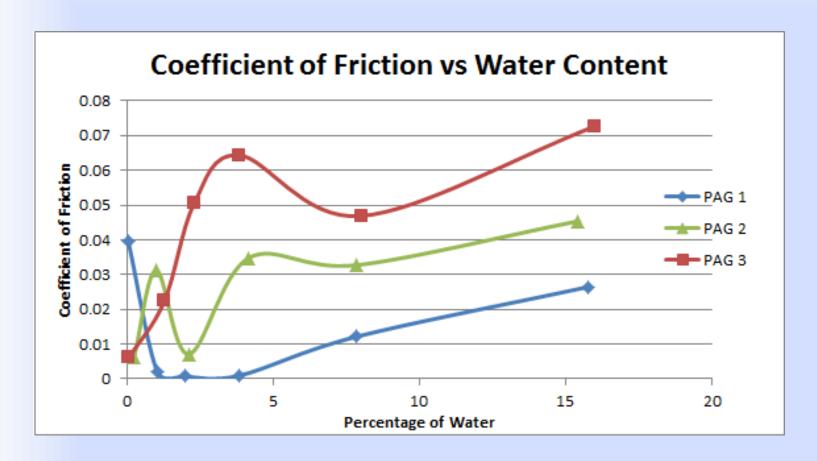
EPA 40 CFR435 Static Sheen Test



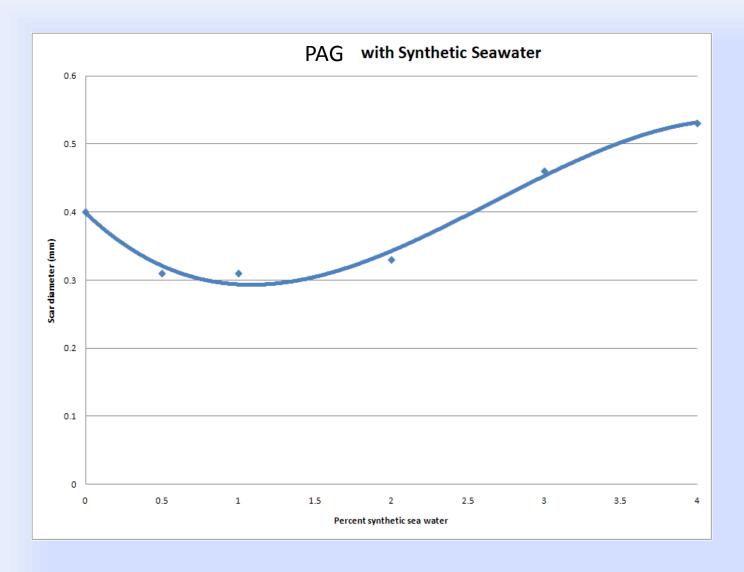
	WS PAG	Vegetable oil based hydraulic fluid	Synthetic ester based hydraulic fluid	White-oil based hydraulic fluid	Petroleum based hydraulic fluid
Silvery or metallic sheen	NO	NO	NO	NO	NO
Increased reflectivity	NO	NO	YES	YES	NO
Visual Color	NO	NO	NO	NO	NO
Iridescence	NO	NO	NO	NO	NO
Oil Slick exceeding 10% of surface area	NO	YES	YES	YES	YES
Appendix 1 to Subpart A of 40CFR435 result	PASS	FAIL	FAIL	FAIL	FAIL


8.6 Detection of a "silvery" or "metallic" sheen or gloss, increased reflectivity, visual color, iridescence, or an oil slick on the water surface of the test container surface shall constitute a demonstration of "free oil." These visual observations include patches, streaks, or sheets of such altered surface characteristics. If the free oil content of the sample approaches or exceeds 10%, the water surface of the test container may lack color, a sheen, or iridescence, due to the increased thickness of the film; thus, the observation for an oil slick is required. The surface of the test container shall not be disturbed in any manner that reduces the size of any sheen or slick that may be present.

WS PAG and Water – Hydrolytic Stability



Kinematic viscosity (cSt) at 40°C



Average Coefficient of Friction at 40°C

Lube Testing with Salt Water

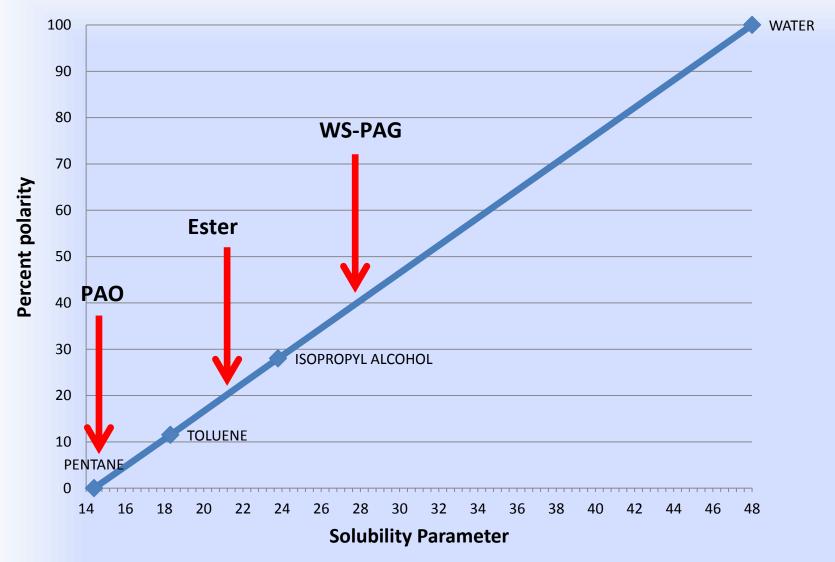
PAG WS ASTM D-4172 4 Ball wear with various amounts of synthetic sea water

Polyglycol Myths

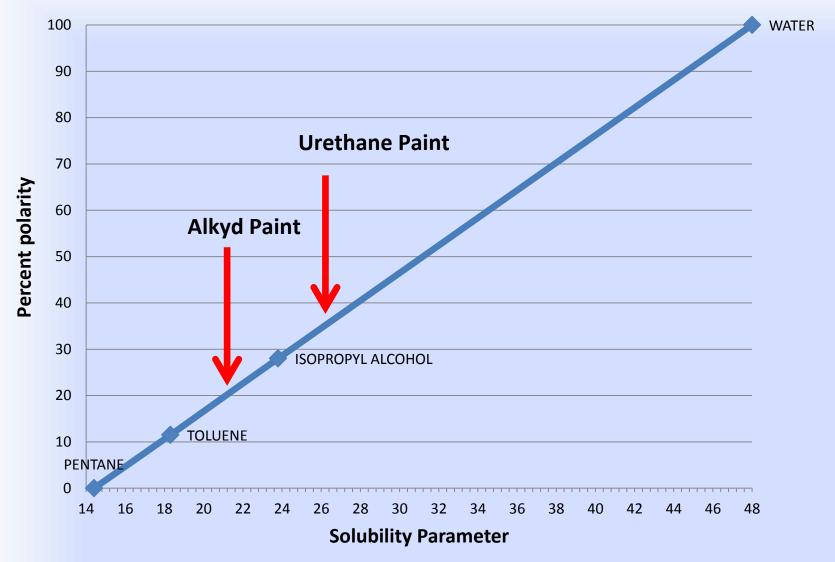
- Incompatible with mineral oil
- Aggressive to elastomers
- Attack paints/coatings
- Water toxicity

It is not a question of FEAR, rather an understanding of SOLUBILITY.

"Likes dissolve likes."



Hildebrand Solubility Parameter


Hildebrand Solubility Parameter

Hildebrand Solubility Parameter

Solubility – Mineral Oil and WS PAG

Elastomer Compatibility - WS PAG

	NBR-1	HNBR	FKM	Neoprene	Urethane
Durometer, point change	-7	-2	0	-16	-8
Volume, % change	+16.4	+1.3	+5	+28.4	+5.3
Weight, % change	+14.4	+1.2	+1.9	+18.8	+4.3

1,000 hours @ 100C

Urethane elastomers are formulation specific.

EAL Toxicity

It's Okay...

It's Biodegradable

Industries Served by WS PAG Fluids

Benefits

Passes EPA 40 CFR 435 Static Sheen Test

Fully compliant with 2013 VGP standards

Fully compliant with USCG standards

Water soluble

Low aquatic toxicity

Readily biodegradable

Worker friendly

Thermal stability

Material compatibility

All-season performance

Excellent lubricant

Non-sludge or varnish forming

Hydrolytically stable

FM Approved fire-resistant hydraulic fluid

Applications

Dredging

Tunnel Boring

Power Plants

- Metso Equilibrium Crane
- Barge Unloader
- Tug Boat
- Lime Unloader
- Various Gear Boxes

Hydro Electric

- Trash Rake
- Wicket/Crest Gates
- Kaplan Turbine Pitch Controls
- Francis Turbine Upper Bearing

US Army Corps of Engineers

- Locks & Dams
- Tainter Gates
- Winches on Floating Crane

Tunnel Boring – 8 Year History

Loop Temp.: $165^{\circ}F (74^{\circ}C)$

Pump Type: Axial piston,

variable displacement

Pump Speed: 1,800 RPM

Pump Flow: 10-50 GPM

(37.85-189.25 LPM)

Pump Pressure: 3,500 PSI – 4,500 PSI

(241 - 310 bar)

Tunnel Boring Machine

PAG's in the Power Generation Industry

<u>Equilibrium Cranes – 4 years</u>

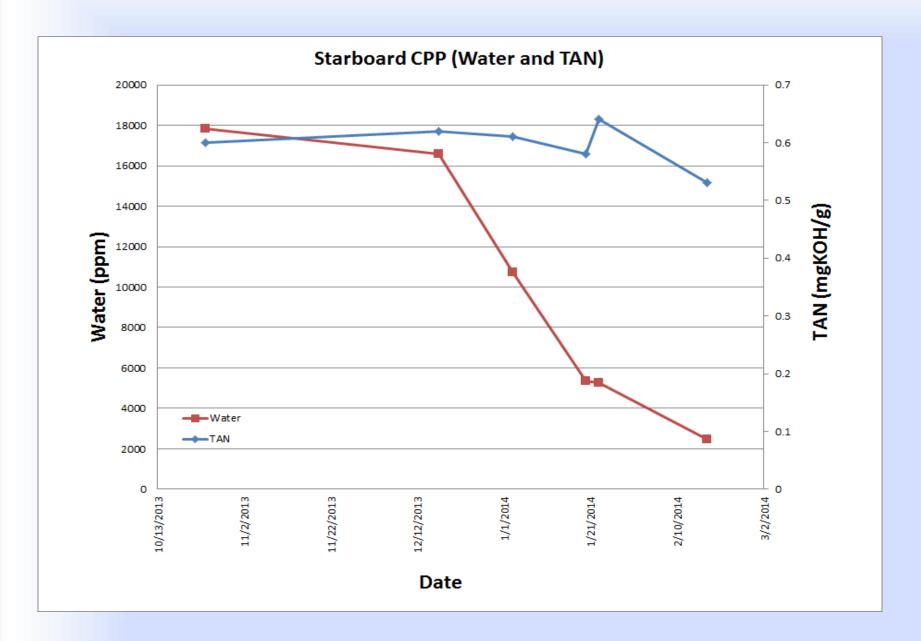
Hydraulic line over the water.

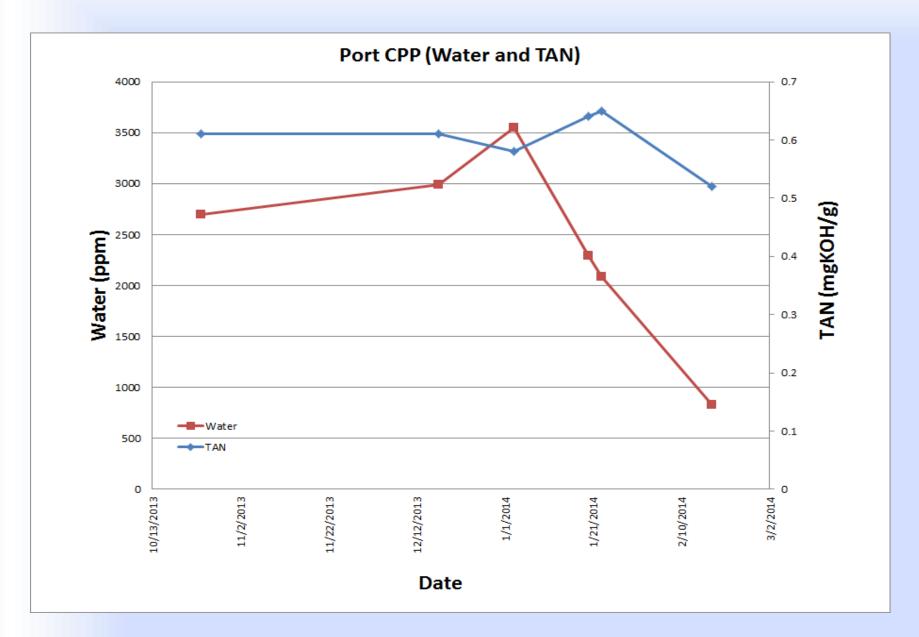
<u>Dredging – 4 Years</u>

- Stern Tubes
- •Hydraulics
- Cutter Heads
- Winches
- •Gear Boxes
- Bow Thrusters

US Army Corp – Winches – 4 years

<u>USCG – Mackinaw Ice Breaker – Bow Thruster (2 yrs)</u>


<u>USACE – Wheeler Dredge - CPP</u>


Wheeler Dredge - Starboard CPP

Wheeler Dredge – Port CPP

Conclusion

	WS	Syn	Bio	Veg
Property	PAG	Ester	<u>PAO</u>	<u>Oil</u>
Biodegradable	Pass	Pass	Pass	Pass
Minimally Toxic	Pass	Pass	Pass	Pass
Non-Bioaccumulative	Pass	Pass(a)	Pass(a)	Natural
USCG Classification	Chemical	Oil	Oil	Oil
EPA Static Sheen	Pass	Fail	Fail	Fail
Long-term Performance w/ Water	Excellent	Fair	Fair	Poor

(a) Synthetic materials made from natural fats and oils may exhibit bioaccumulation having a negative impact upon bio-organisms.