Welcome

Dredging and Capping for the East Branch of the Grand Calumet River

Kenneth R. Mika, PE

Contributing Authors

Tyler Lee – J.F. Brennan Company, Inc.

 Chris Musson – Natural Resource Technology, Inc.

 Rich Weber, PE – Natural Resource Technology, Inc.

GLSR Team

- Great Lakes Sediment Remediation, LLC (GLSR)
 - Natural Resource Technology, Inc.
 - Quality assurance and control
 - J.F. Brennan Company, Inc.
 - Marine operations
 - Environmental Restoration, LLC
 - Upland operations
 - Subcontractors and Suppliers
 - Infrastructure Alternatives, Inc.
 - Sediment dewatering and water treatment
 - Cardno JFNew
 - Invasive species control and restoration
 - AquaBlok, Ltd.
 - AquaGate

Overview of Presentation

- Project location, goals, and objectives
- Upland support area
- Pipeline and railroad bridge demolition
- Sediment basin excavation and sheet pile installation
- Hydraulic dredging of river and wetlands
- Excavation of wetlands and marsh
- Sediment capping and sand placement
- Wetland restoration
- Construction quality assurance and control
- Project metrics

Project Location, Goals, and Objectives

Grand Calumet River Area of Concern (AOC)

Grand Calumet River AOC (continued)

- Beneficial Use Impairments
 - Restrictions on fish and wildlife consumption
 - Eutrophication or undesirable algae
 - Tainting of fish and wildlife flavor
 - Restrictions on drinking water consumption, or taste and odor
 - Degradation of fish and wildlife populations
 - Beach closings
 - Fish tumors or other deformities
 - Degradation of aesthetics
 - Bird or animal deformities or reproduction problems
 - Added costs to agriculture or industry
 - Degradation of benthos
 - Degradation of phytoplankton and zooplankton populations
 - Restriction on dredging activities
 - Loss of fish and wildlife habitat

Partners and Stakeholders

- U.S. Environmental Protection Agency Great Lakes National Program Office (Great Lakes Legacy Act funded 65%)
- State of Indiana (funded 35%)
 - Indiana Department of Environmental Management
 - Indiana Department of Natural Resources
- U.S. Army Corps of Engineers
- U.S. Fish and Wildlife Service
- Shirley Heinze Land Trust
- The Nature Conservancy
- Save the Dunes Conservation Fund
- E.I. du Pont de Nemours and Company
- Resco Products Company
- SulTRAC (Engineer of Record)
 - Joint venture between Sullivan Engineering and Tetra Tech

Project Goals and Objectives

- Remove PCB and SVOC contaminant mass
- Reduce risks to aquatic life and human health
- Reduce contaminant transport to Indiana Harbor and Lake Michigan
- Improve water quality in EBGCR and Grand Calumet River AOC
- Advance the AOC toward delisting thru removal of beneficial use impairments
- Improve biota, fish, and wildlife habitat

Schedule and Funding

- Base Begun Mar. 2013
 - Construction Contractor Quality Assurance Project Plan, Bonds, Mobilize, Site Prep, Demo, Dredge/Excavate Sediment Basin & Wetland A
- Option A Begun Jul. 2013
 - Invasives Control, Dredge River & Wetlands B-F, Restore Wetland A
- Option B Begun Jan. 2014
 - Excavate & Backfill East Marsh
- Option C Begin Jul. 2014
 - Restore Wetlands B-F, River Sediment Capping
- Option D 2015
 - Excavate & Backfill West Marsh, Demobilize
- Habitat Maintenance 2016

Upland Support Areas

Upland Support Areas

Site Preparation: Upland Support Area 5 Aerial

Pipeline and Railroad Bridge Demolition

Railroad Bridge Removal

- Testing and removal of abandoned gas pipeline
- Removal of ties and walkways
- Tested for lead based paints
- Disassembly of girder sections
- Removal of timber piling
- Debris removal and load out

Sediment Basin Excavation and Sheet Pile Installation

Installation of Sediment Basin

- Created to provide sediment trap for upstream contaminated sediments
 - Hydraulically dredged 13,000 m³ (17,000 cy)
 - Mechanically excavated 8,500 m³ (11,000 cy)
- 410 m² (4,400 ft²) sheet pile wall driven across downstream end
 - Raises water elevation 0.3 m (1 ft) above normal
 - Functions as a weir, trapping sediment behind it

Hydraulic Dredging of River and Wetlands

Hydraulic Dredging

Hydraulic Dredging

 Two 20 cm (8 in) cutterhead dredges with "surgical" dredging capabilities used

> Both dredges had RTK-GPS equipment

Area	Volume (m³)	Volume (cy)
Sed. Basin	13,000	17,000
SMU A	3,800	5,000
SMU B	3,100	4,100
SMU C	20,900	27,300
Wetland B	3,100	4,100
Wetland C	4,200	5,500
Wetland D	37,700	49,300
Wetland E	9,300	12,200
Wetland F	3,100	4,100
Totals	98,300	128,600

Survey

- Multiple RTK-GPSSurveys per day
 - Hydrographic
 - Marshland
 - Land-based
- QA/QC real-time

Geotextile Tubes and Water Treatment

- The temporary, lined pad is 140 m by 275 m (450 ft by 900 ft)
- 60 tubes staked in three layers to minimize pad foot print
- The temporary water treatment system was sized to treat up to 19 million liters per day (5 million gallons per day) during hydraulic dredging operations

NATURAL RESOURCE

Excavation of Wetland A and Marsh

Wetland A & Marsh Excavations

Wetland A & Marsh Excavations

- Three Parts
 - Wetland A
 - 15,300 m³ (20,000 cy)
 - East Seidner Marsh
 - 73,200 m² (95,800 cy)
 - West Seidner Marsh
 - 71,300 m² (93,300 cy)
- Mechanical excavation using amphibious equipment, excavators, and trucks
 - Amphibious truck capacity 12 m³ (15 cy)

Wetland A **Upland Sediment Basin Area** Volume= 13,082 cu yd Stockpiles Nature Concervancy 2012 - 2013 East Chicago, IN East Branch Grand Calumet River Figure #1a - Contractor Area 1 East Branch Coordinate Systems NAD 83 - IN-1302 Indiana West, US Survey Feet Horizontal Coordinate System Vertical Coordinate System NGVD 29, US Survey Feet Notes:Total Area of parking Gravel: 0.75 Acres Scale: 1"= 120' GREAT LAKES SEDIMENT REMEDIATION, LLC

Sediment Basin and Wetland A Before Excavation

Sediment Basin and Wetland A After Excavation

Seidner Marsh

NATURAL RESOURCE TECHNOLOGY

East Seidner Marsh Before

East Seidner Marsh During

Sediment Capping and Sand Placement

Sediment Capping and Sand Placement

- Broadcast Capping System (BCS)™
 - Evenly and gently distributes sand while minimizing intermixing with underlying sediments
- Wetlands A F
 - 42,900 m³ (56,100 cy) of sand to be placed with BCS™ and mechanically
- River segments
 - 7,000 m³ (9,200 cy) of Absorptive Cap (AquaGate+ORGANOCLAY™) with BCS™
 - 16,900 m³ (22,048 cy) of armored cap with BCS™

- Sedimentation Basin
 - 600 m³ (800 cy) of sand with BCS™
- East and West Seidner Marsh
 - 87,000 m³ (113,700 cy) of sand placed mechanically and using the BCS™

Wetland Restoration

Invasive Species Control

Eradication of invasive vegetation

(phragmites, cattails)

Herbicide application

Prescribed burning

Maintenance and Monitoring

- Performance Standards
 - Coverage (Native and Invasive)
 - Representation
 - Survival

 12 months from EPA preliminary acceptance

(2016)

Construction Quality Assurance and Control

Pre- and Post-Construction Soil Sampling

 Verify that construction activities will not result in residual contamination of upland support areas

Water Quality Monitoring During Dredging and Capping

- Real time turbidity monitoring as a surrogate measurement to evaluate TSS
- Advisory (25 NTU) and Action (50 NTU) levels established via TSS: Turbidity correlation

Water Treatment Plant Effluent Sampling

 Document treated water meets discharge permit requirements

Additional QA/QC Activities

- Cap thickness documentation
- AquaGateTM content verification (organoclay loading)
- Other:
 - Sampling imported material for geotechnical & chemical characterization (sand backfill, armor gravel, topsoil)

Project Metrics

- Project length: 2.9 kilometers (1.8 miles)
- River depth: Pre-dredge ~0->3 m (0->10 ft); Post-dredge > 1.8 m (> 6 ft)
- River sediment and wetland dredging volume: ~ 122,300 m³ (160,000 cy)
- Marsh excavation volume: ~144,500 m³ (189,000 cy)
- Sediment cap profile: 22.9 cm (9 in.) armor over 12.7 cm (5 in.) isolation [reduced to 7.6 cm (3 in.) and 7.6 cm (3 in.) over buried pipelines]

Project Metrics (continued)

- Water treatment: 13,200 LPM (3,500 GPM) during hydraulic dredging; now downsized for weep water and precipitation; discharge back to river under NPDES permit
- Dewatering: ~60 geotextiles tubes stacked 3-high
- Wetlands and marsh invasive species control of 190,200 m² (47 acres) and restoration of 299,500 m² (74 acres)
- Project duration: ~3 years plus 12 months revegetation maintenance
- Project budget: ~\$80 million

Questions?

