

Delft University of Technology – Offshore & Dredging Engineering

Dredging A Way Of Life

Offshore & Dredging Engineering

Dr.ir. Sape A. Miedema Educational Director/Head of Studies: Offshore & Dredging Engineering & Marine Technology

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

THE DELFT SAND, CLAY & ROCK CUTTING MODEL

Problem definition: In 30 years many papers, a lot of redundancy, but what are the main issues.

Solution: Writing a book showing the main issues.

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

THE DELFT SAND, CLAY & ROCK CUTTING MODEL

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering

″UDelft

Delft University of Technology Offshore & Dredging Engineering

Cutting Experiments

Hatamura Chijiiwa Test Facility

Hatamura Chijiiwa Dry Quarts Sand

(a) Dry quartz sand

Hatamura Chijiiwa Wet Quarts Sand

(b) Wet quartz sand

Hatamura Chijiiwa Plastic Bentonite

(c) Plastic bentonite

Hatamura Chijiiwa Plastic Loam

(d) Plastic loam

Hatamura Chijiiwa Plastic Clay

Hatamura Chijiiwa Compacted Loam

(f) Compacted loam

Hatamura Chijiiwa Failure Types

Cutting Mechanisms in Sand

Faculty of 3mE - Dredging Engineering

FUDDelft Delft University of Technology Offshore & Dredging Engineering

Delft

Delft University of Technology Offshore & Dredging Engineering

Hatamura Chijiiwa Dry Sand 30 deg.

(a) Cutting angle $\alpha = 30^{\circ}$

(b) Cutting angle $\alpha = 45^{\circ}$.

Hatamura Chijiiwa Dry Sand 60 deg.

Hatamura Chijiiwa Dry Sand 75 deg.

TUDEIft Delft University of Technology Offshore & Dredging Engineering

Hatamura Chijiiwa Dry Sand 90 deg.

Cutting Mechanisms in Loam

Faculty of 3mE - Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

)elft

Delft University of Technology Offshore & Dredging Engineering

Hatamura Chijiiwa Plastic Loam 30 deg.

(a) Cutting angle $\alpha = 30^{\circ}$

Hatamura Chijiiwa Plastic Loam 45 deg.

(b) Cutting angle $\alpha = 45^{\circ}$

lft

e

Delft University of Technology Offshore & Dredging Engineering

Hatamura Chijiiwa Plastic Loam 60 deg.

(c) Cutting angle $\alpha = 60^{\circ}$

Hatamura Chijiiwa Plastic Loam 75 deg.

Hatamura Chijiiwa Plastic Loam 90 deg.

(e) Cutting angle $\alpha = 90^{\circ}$

Cutting Mechanisms in Rock

Faculty of 3mE - Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Delft

Delft University of Technology

Offshore & Dredging Engineering

Cutting Mechanisms in Rock

Cutting Mechanisms

Cutting Mechanisms

Cutting Forces

Forces on the Layer Cut

Forces on the Blade

Resulting Equations

$$K_{2} = \frac{W_{2} \cdot \sin(\alpha + \beta + \varphi) + W_{1} \cdot \sin(\varphi) + G \cdot \sin(\beta + \varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$\frac{+I \cdot \cos(\varphi) + C \cdot \cos(\varphi) - A \cdot \cos(\alpha + \beta + \varphi)}{\sin(\alpha + \beta + \delta + \varphi)}$$

$$F_h = -W_2 \cdot \sin(\alpha) + K_2 \cdot \sin(\alpha + \delta) + A \cdot \cos(\alpha)$$

$$F_{v} = -W_2 \cdot \cos(\alpha) + K_2 \cdot \cos(\alpha + \delta) - A \cdot \sin(\alpha)$$

Which Terms in Which Soil

Table 1. The influences for each type of soil.

	Gravity	Inertia	Pore Pressure	Cohesion	Adhesion	Friction
Dry sand						
Saturated						
sand						
Clay						
Atmospheric						
rock						
Hyperbaric						
rock						

Cutting Forces with Wedge

Faculty of 3mE - Dredging Engineering

FUDDelft Delft University of Technology Offshore & Dredging Engineering

A Wedge in Dry Sand

Wedge Definitions

CONCLUSIONS

- 6 cutting mechanisms are identified for 'small' blade angles.
- Dry Sand: The Shear Type.
- Saturated Sand: The Shear Type.
- Clay & Loam: The Flow Type, The Curling Type & The Tear Type.
- Atmospheric Rock: The Tear Type (Brittle Tensile), The Shear Type (Brittle Shear) & The Chip Type (Combination of Brittle Shear & Tensile).
- Hyperbaric Rock: The Crushed Type (Cataclastic Failure).

Faculty of 3mE – Faculty CiTG – Offshore & Dredging Engineering