

14 June 2016

The Value of Navigation-Dredged Material to Ecosystem Restoration and Coastal Resiliency

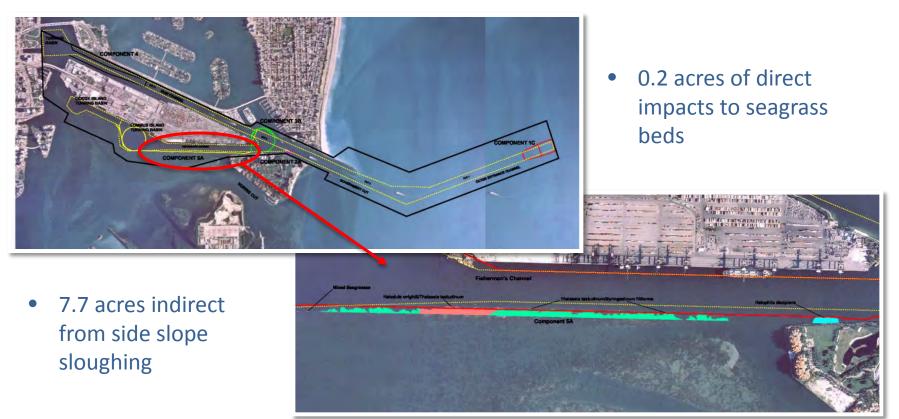
WODCON XXI Miami, Florida

T. Jordan-Sellers, Senior Biologist, U.S. Army Corps of Engineers, Jacksonville District, Environmental Branch E.P. Summa, Chief, Planning Division, U.S. Army Corps of Engineers, Jacksonville District

- B. Hope, Environmental Manager, PortMiami
- C.J. Kruempel, Director of Coastal Services, Tetra Tech, Inc.
- D. Nelson, Project Engineer, Great Lakes Dredge and Dock

A. McCarthy, Senior Scientist / Project Manager, CSA Ocean Sciences Inc.

- M.S. Fonseca, Ph.D., Vice President, Science, CSA Ocean Sciences Inc.
- S.R. Conger, Engineering Technical Lead, U.S. Army Corps of Engineers, Jacksonville District
- C. Pomfret, Senior Project Manager, Great Lakes Dredge and Dock, LLC.



- 1990: Congress recommended navigational improvements to Miami Harbor
 - Authorized a Project Feasibility Study
- 2004: USACE issued Final Environmental Impact Assessment

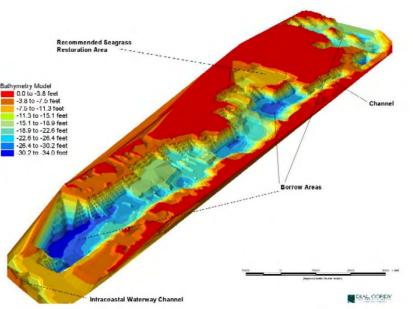
SEAGRASS MITIGATION REQUIREMENTS

- Biscayne Bay
 - Critical habitat for Florida manatee and Johnson's seagrass
 - Aquatic Preserve (OFW)
 - Important nursery habitat
- Compensatory mitigation required for unavoidable impacts
- Identify the best alternative to offset seagrass habitat loss

PREVIOUS DREDGE HOLE PROJECT

- Up to 40% of northern Biscayne Bay historically dredged
- 1994: Miami-Dade DERM conducted inventory of potential fill sites
- 1993-1995: Pilot project to fill 2.6 acre with PortMiami expansion dredged material
 - Partially successful
 - Did not cap with fine grained sands due to insufficient funds, leaving "coarse and rocky" material
 - Rock groins may have prevented natural infilling and colonization
 - 12,597 planting units; Max survival of transplants ~60%
- No large-scale dredge hole fill efforts until 2013

IDENTIFYING IDEAL MITIGATION SITE


- 1994 inventory: Size and physical characteristics of potential fill areas
- Area north of Julia Tuttle Causeway defined as suitable for filling
- >100 + acres in size

- 2002-2003 surveys confirm JT dredge hole most appropriate size
 - Draft EIS proposed 24 acres with no seagrass transplantation

FILL	VATER DEPTH (ft)	SURPÁCE AXXA (actem)	BOTTON MATERIAL	AMBIENT DEPTH (ft)	MAXIMUH CURRENT VELOCITT (ft/sec)	SUSPENDED SOLIDS (mg/1)	ESTINATED FILL ROD.	FILL TIPE	POTENTIAL EXVIRONMENTAL BENEFIT
11-V	7_0	10)	Sandy	2.0-5.0	0.2	10	46,000ey	Dredge Spall	Séagrass Grouth
II-B	7.0-8.0	(46)	Sandy	4.0-6.0	0.2	10	300,000ey	Dredge Spoil	Sengrass Growth
11-C	B.0	3	Huddy	6.0	0.7	8	3,000cy	Coarse Sand	Mud cap
III-A	13.0-17.0	15	Maddy	3.0-5.0	0.3	4	290,00027	Const. Debris	Artific. Reef
III-B	16.0-24.0	16	Maddy	5.0-5.0	0.3	.6	360,000cy	Const. Debris	Artific. Bauf
III-¢	4.0-7.0	0	Suddy	2,0-3.0	0.3	7	19,000c7	Dredge Spoil	Saagraas Growth
	1.0-8.0	3	Muddy	1.0-3.0	1.0	13	31,000er	Dredge Spoil	Seagrage Growth
	1.0-8.0	31	Sandy	4.0-0.0	1.0	6	150,000cy	Dredge Spoil	Stagrass Growth

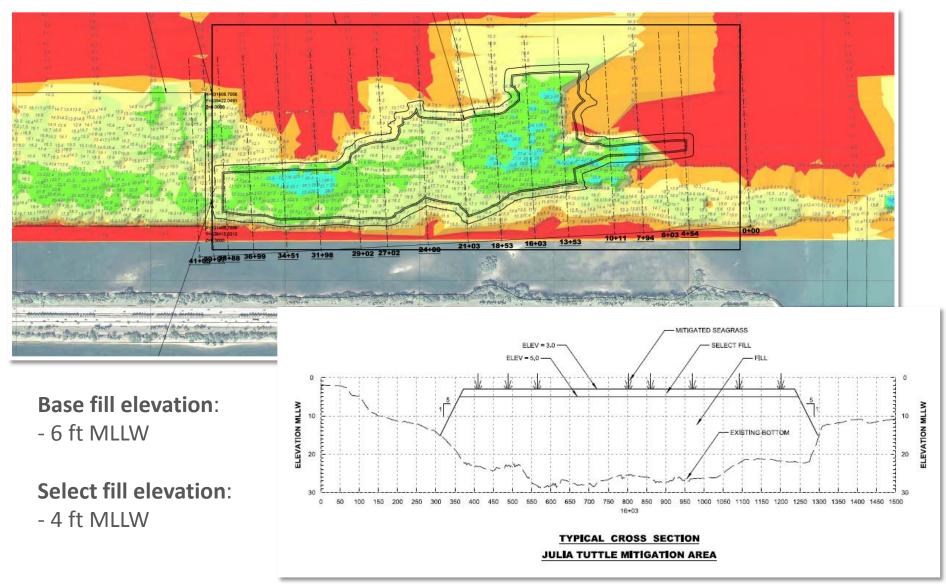
TABLE 2.1 PHYSICAL CHARACTERISTICS OF FOTEWTIAL FILLING AREAS IN NORTE BISCATKE BAT

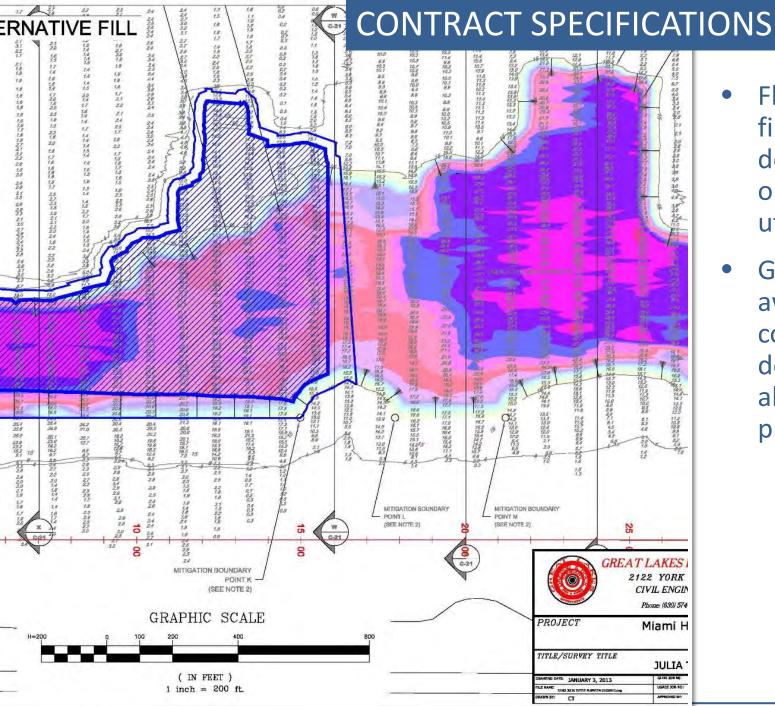
HISTORY OF JULIA TUTTLE HOLE

- The "Julia Tuttle" hole (circa 1959) was dredged for material for the Julia Tuttle Causeway from Miami to Miami Beach
- Hole was large (>100 acres) and deep (up to 24 ft)
- Causeway effectively created barrier to water movement
- Low sediment inflow in the bay
- Unlikely to naturally fill over time and be able to support seagrass

Photo credit: http://miamiarchives.blogspot.com/2013/07/julia-tuttle-causeway-opens-dec-12-1959.htm

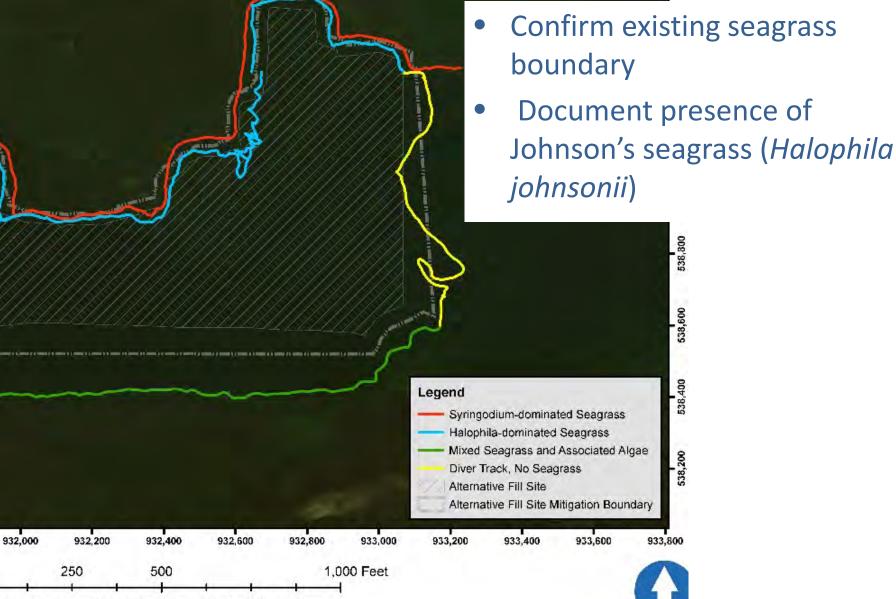
PRECONSTRUCTION ENGINEERING AND DESIGN



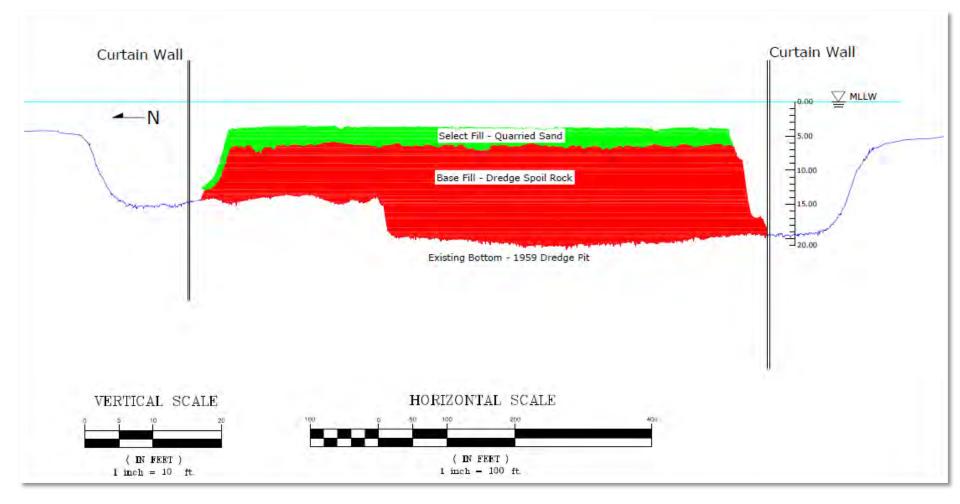


- 2004 NEPA process complete (EIS)
- 2006 Record of Decision (ROD)
- 2012 Final Florida Department of Environmental Protection (FDEP) permits, including federal and state consistency determinations
- Functional analysis conducted (UMAM)
 - Final Mitigation
 - 16.6 acres filled with dredged and quarried material
 - 7.15 acres planted with locally sourced seagrass
 - Turbidity a concern
 - Dredged material ≤15% silts and clays
 - Quarried material (upland source) ≤5% silts and clays
 - Compliance levels: 9 NTUs* above background
- 2012 Development of plans and specifications

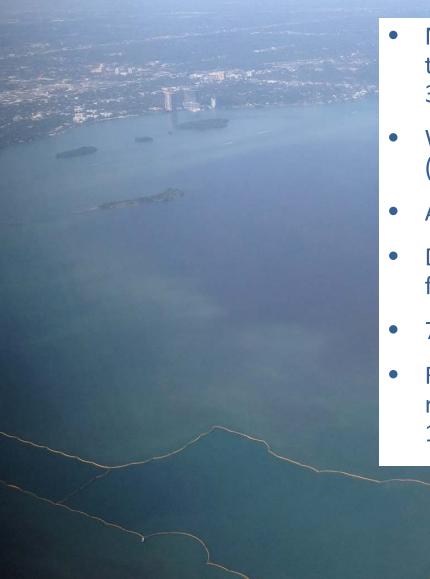
CONTRACT SPECIFICATIONS


31-acres available for 16.6-acres mitigation

- Flexibility in final site design to optimize site utilization
 - GLDD awarded contract; developed alternative fill plan


539,6

Coordinate System: NAD 1983 StatePlane Florida East FIPS 0901 Feet


SITE DESIGN

- Base fill (-6 ft MLLW) ≤15% silts and fines but NO upper limit
- Broken limestone rock (dredge spoil) chosen for low turbidity potential

CSA Ocean Sciences Inc.

SITE CONSTRUCTION - CURTAINS

- More curtains than GLDD deployed at one time- 7,350 linear feet encompassing 34.5 acres
- Weighted with chains (2.4 lb/ft)
- Anchoring not feasible
- Drive vertical steel pilings –into 12 to 26 ft. water depths
- 74 steel pilings; ~100 ft apart
- Rigorous maintenance and curtain replacement: Replaced certain segments 1-2 times; total 13,900 linear feet

BASE FILL TRANSPORT

- 1,192 split hull scow loads
- <1,000 CY/scow load due to depth</p>
- ~5.0 mi one-way trip
- Cross under three IWW bridges

BASE FILL PLACEMENT

material
Beneficial reuse – no ODMDS (~600 ft)
Daily bathymetric surveys
Created 16.99 acres seagrass habitat

CSA Ocean Sciences Inc.

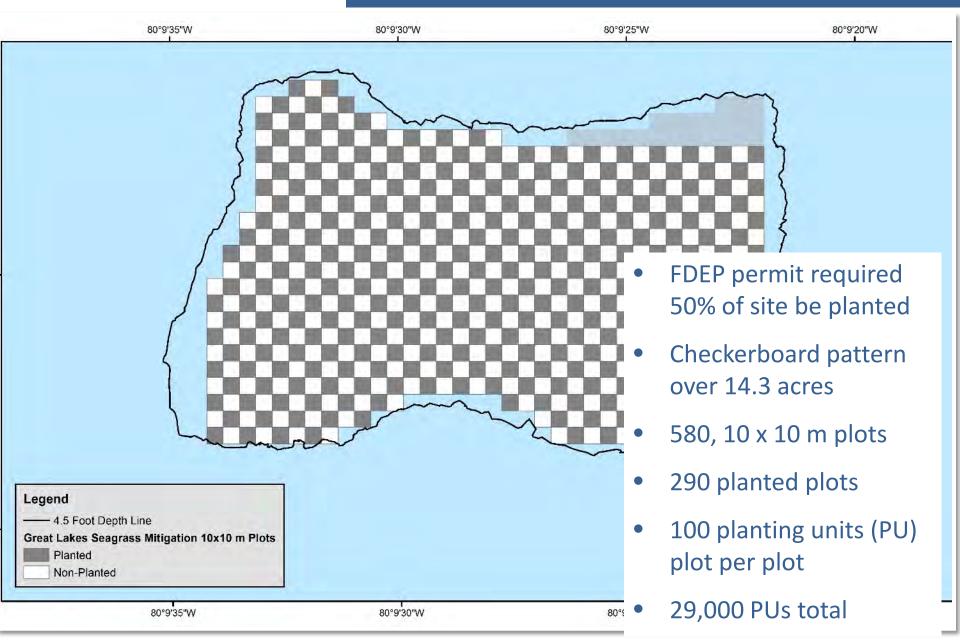
560,000 CY of navigation dredged

BASE FILL COMPLETE

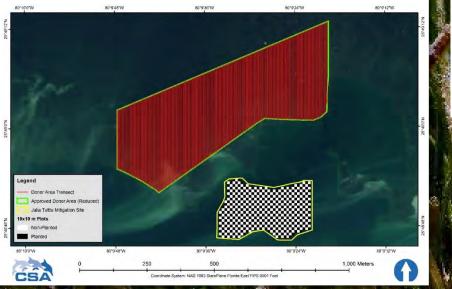
-6 ft MLLW – USACE approved December 17, 2014

SELECT FILL TRANSFER

- Dredged material non-compliant for select fill (>5% silts and clays)
- Sourced from local quarry
- 114,425 tons; 5,500 dump trucks
- Stockpiled at staging area
- Transferred to barges using sand shooter
- 3.5-mi transit; no bridges

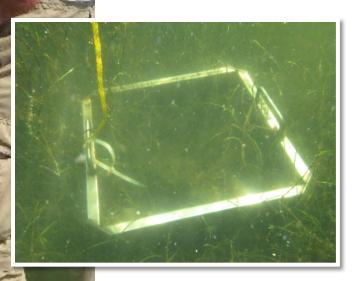

SELECT FILL PLACEMENT

- 285 barge loads
- 85,000 CY select fill
- 180 days active filling
- -4 ft MLLW USACE approved 3 August 2015



SEAGRASS PLANTING DESIGN

DONOR SITE SELECTION



- FDEP required approval of harvest (donor) area
- Donor area must be "proximal" and adjacent to the JTMS
- Joint survey FDEP, USACE, and CSA
- Target species, Syringodium filiforme (manatee grass)
 - Searched for high density aerial and sediment runners (growing tips)
 - Area of ~273,000 m² selected

SEAGRASS HARVESTING

- 30 days following approval of site
- 0.25 m² harvest plots
- Every 2 m along 100 m transects
- "Cookie cutters" used
- Stored *in situ* in large mesh bags

PLANTING UNIT (PU) FABRICATION

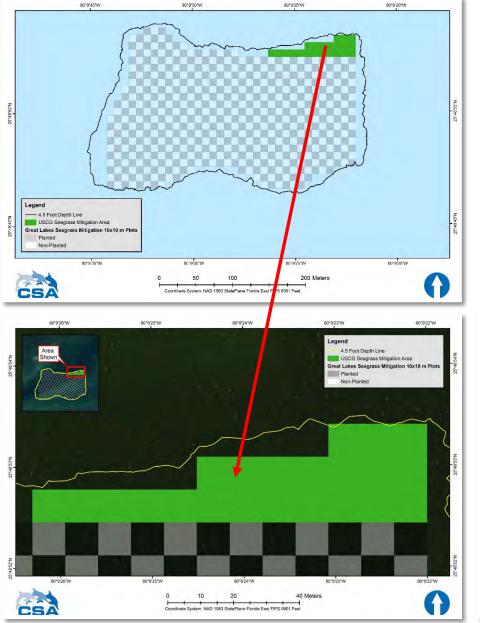
- Syringodium filiforme (manatee grass) with growing tips
- Non-target seagrass discarded
- "Bare-root" staple method
- 4-5 growing tips (rhizome apicals) + staple = 1 PU
- Each tray held 100 PUs
- Mean = 4.1 growing tips (apicals) PU⁻¹

Plots visibly partitioned

SEAGRASS PLANTING

Divers inserted 1 PU m⁻² just beneath the sediment surface

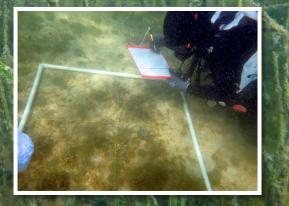
Manatees observed eating PUs



BIRD STAKE INSTALLATION

- Bird roosting stakes installed to fertilize seagrass and encourage growth
- Each bird stake marked by plot number (1-290) burned into the face
- 1,160 stakes (4 per plot) interior of plot
- 45 days for planting and bird stake installation

USCG MITIGATION



- Mitigation for Dredging at U.S.
 Coast Guard Base Miami Beach
- Opportunity to increase seagrass habitat restoration at JTMS
- 0.54 acres, conterminous
 10 m x 10 m plots planted (no checkerboard)

MONITORING

- Survivability survey (~30 days following completion)
- Miami Harbor mitigation: 5 Y by Miami-Dade County consultants
- USCG mitigation: 5 Y by CSA

INITIAL RESULTS ~30 DAYS

- Miami Harbor PUs 97.6% survival
 - Above and below ground growth
- USCG PUs 98.2% survival
- Baseline USCG data
 - Mitigation Site: 1% Total Seagrass;
 Reference Site: 55.0% Total Seagrass

NATURAL COLONIZATION

- Volunteer seagrass 5 species
 - Halodule wrightii
 - Syringodium filiforme
 - Halophila decipiens
 - Halophila englemanii
 - Thalassia testudium
- Macroalgae multiple species

NEXT STEPS

- Document natural colonization by volunteer (non-planted) seagrass
- Quantify recovery trajectory for comparison with literature
- Compare seagrass cover and density with reference area
- Assess overcompensation response
- Seasonality of aerial runners

QUESTIONS?

Thank you to all the team members that helped make this project a success!

