



#### Sustainable Strategies for Carbon Management in Coastal Zones: Role for the Dredging Sector

Erik van Eekelen presenting for: Pieter van der Klis, Paris Sansoglou & Frederik Mink

> **Environment Committee European Dredging Association**

> > **European Dredging Association 2016**



WODCON XXI - june 13-17, 2016, Miami, FL

Slide 1



# Presentation's Objectives



#### Demonstrate that:

⇒Blue Carbon should be part of sustainable strategies for carbon management in coastal zones !

⇒Building with Nature provides a frame to design and implement innovative approaches for waterborne infrastructures including pro-active carbon management.

#### And:

Provide food for thought on the role of the dredging sector in global and local carbon management strategies.

European Dredging Association 2016





#### Agenda

- Introduction
- 'Blue carbon'
- The Way Forward
- Case study
- Conclusion

**European Dredging Association 2016** 



# Introduction WODCON XX Brussels 2013

WODCON XX World Dredging Congress and Exhibition

THE ART OF DREDGING

AND IN STREET, IN THE STREET, STREET,



**European Dredging Association 2016** 





# **Blue Carbon**

**European Dredging Association 2016** 

## Carbon Cycle: CO<sub>2</sub> Emissions vs CO<sub>2</sub> Capture







### Blue Carbon: A Colourful Story



#### *Brown* carbon:

#### Black carbon:

Green carbon:

#### Blue carbon:

Carbon captured and stored by the world's oceans and coastal biotopes.



**European Dredging Association 2016** 



## Carbon Uptake (variability): Comparison between selected Coastal Biotopes'

| Biotope      | Rate carbon burial<br>(sequestration)<br>gC/m²/yr -<br>(MgC/ha/yr) | Estimated net<br>carbon retention<br>in biomass<br>gC/m²/yr –<br>(MgC/ha/yr) | Total rate<br>gC/m²/yr<br>(MgC/ha/yr)<br>(NECB) |
|--------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|
| Seagrass     | 140 +/- 40 (1.4+/-0.4)                                             | 1-10 (0.01-0.1)                                                              | 100-180 (1.0-1.8)                               |
| Saltmarsh    | 220 +/- 25 (2.2+/-0.25)                                            | 10-30 (0.1-0.3)                                                              | 210-270 (2.1-2.7)                               |
| Mangroves    | 175+/- 25 (1.75+/-0.25)                                            | 150-400 (1.5-4.0)                                                            | 300-600 (3.0-6.0)                               |
|              |                                                                    |                                                                              |                                                 |
| VODCON XXI - | Slide 8                                                            |                                                                              |                                                 |





#### Coastal Habitats Protect Massive Amounts of Carbon



## Carbon Uptake: Carbon Budget for Mangrove Ecosystems







#### Conclusions 'Blue carbon'

- More information available demonstrating magnitude of 'Blue Carbon' uptake
- Variability within and between biotopes becomes more clear (latitude, age, etc.)
- Information base for mangroves most wellknown

**European Dredging Association 2016** 





# The Way Forward

**European Dredging Association 2016** 

WODCON XXI – june 13-17, 2016, Miami, FL

Slide 12



# **Carbon Strategies**



|                                                   | <b>Investment based</b>                                                       | Operational                                                                                                          |
|---------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Strategy at<br>company/ project<br>level          | <ul><li>(1) Invest in fleet efficiency</li><li>or alternative fuels</li></ul> | <ul> <li>(2) Project-based: offset loss of mangroves / salt marsh / seagrass</li> <li>(replant).</li> </ul>          |
| Strategy/Policy at<br>sector/intersector<br>level | (3) Up-front <b>investment</b> in large plantations                           | (4) <b>Carbon trading:</b><br>buy CO <sub>2</sub> certificates to<br>compensate for<br>project or fleet<br>emissions |
|                                                   | European Dredging Asso                                                        | ciation 2016                                                                                                         |



#### Which Solution ? Need for a Paradigm Shift



➡ From defensive approach, minimising environmental impact,

*"Environment = Constraint"* 

- To constructive approach, optimising "Environment = Opportunity" full (socio-)economic and environmental potential.
- Considering the project's added value to:





Paradigm shift: Building with Nature



Ecology

"Eco-Dynamic Design & Development" ⇒the dynamics of the natural system become the starting point for design and realisation of maritime infrastructures:

- ✓ Make optimal use of natural processes
- ✓ Design fits with natural (eco-)system dynamics
- Explore opportunities to promote nature development

⇒Key disciplines are integrated(Engineering, Ecology & Governance).

Governance

Engineering

**European Dredging Association 2016** 



- Coastal Protection
- Dune formation
- Hydrology and geochemistry

WODCON XXI – june 13-17, 2016, Miami, FL

- Marine ecology
- Terrestrial ecology

• Governance

& Carbon uptake!!







Coastal protection Sea grass



Coastal protection Mangroves

#### Exposure of Coastal Cities: Threat or opportunity?



#### Exposure to floods in cities

Ranking by population exposure

- 1. Kolkata (India)
- 2. Mumbai (India)
- 3. Dhaka (Bangladesh)
- 4. Guangzhou (China)
- 5. Ho Chi Minh City (Vietnam)
- 6. Shanghai (China)
- 7. Bangkok (Thailand)
- 8. Rangoon (Myanmar)



10. Hai Phong (Vietnam)

Ranking by value of property and infrastructure assets exposure

- 1. Miami (USA)
- 2. Guangzhou (China)
- 3. New York (USA)
- Kolkata (India)
- 5. Shanghai (China)
- Mumbai (India)
- 7. Tianjin (China)
- 8. Tokyo (Japan)
- 9. Hong Kong (China)
- 10. Bangkok (Thailand)

**European Dredging Association 2016** 

Source: UN Global Report on human settlements 2011



#### **Climate Change Adaptation** Flanders Bays 2100 - Innovative Solutions

Flanders Bays 2100: A Contractor's vision of what could be possible to integrate Climate Change Adaptation, Developments and Nature

Install a safe harbour of shelter for emergency at the cross-road of maritime fairways

offshore energy regulation

Reinstate and nourish the natural sand and dune belt as a resilient coastal protection

Re-build the once lost islands and peninsulae to secure coastal protection and to offer new land for habitats, tourism and

KNOKK

DAMME

recreation

Develop the "Green" and "Blue" **Offshore Energy Belt: windmill farms** and tidal stream generator farms

Raise the shore-protecting sandbanks to keep pace with sealevel rise

WODC

MIDDELKERKI

Install a hydraulic pumped

storage as mega-battery for

OSTENDI

Allow the integrated development of ports as gateways for trade and ecomic growth

BRUGGE

ZUIENKERKI

е

Vlaamse Baaien



**European Dredging Association 2016** 





### Case Study DA Dredging of access channel to estuarine port



<u>Features</u>: estuarine port 20 km upstream from the coastline; access channel bordered by extensive mangrove forest (both sides); navigational access difficult due to strongly meanders; navigational depth (8m draught ships)

#### <u>Option I</u>: construct a **new direct access channel**;

of 15 km length and a width of 150m and low tide depth of the channel of 9m; cutting through mangrove forest;

15 million m<sup>3</sup> needs to be dredged and disposed placed at sea.

#### **Option II: alternative solution**

maintain port entry via the river (in part); deepened (in part) to 10 m over a stretch of 16 km; access completed by a shorter channel of 3 km length and 150 m width; in addition build **artificial island** near estuary's mouth with dredged material surrounded by a dyke or bund (using sandy material from the river bed; replant artificial island with mangroves.

European Dredging Association 2016

### Case Study Dredging of access channel to estuarine port



|                                                                 | <b>Option I</b>           | <b>Option II</b>         |
|-----------------------------------------------------------------|---------------------------|--------------------------|
| Mangrove area removed                                           | 300 ha                    | 60 ha                    |
| Volume of material to be dredged (river bed)                    | -                         | 7,200,000 m <sup>3</sup> |
| Volume of material to be dredged (mangrove soil) m <sup>3</sup> | 15,000,000 m <sup>3</sup> | 3,000,000 m <sup>3</sup> |
| Surface area artificial island (new mangrove plantation)        | -                         | 60 ha                    |

**European Dredging Association 2016** 

#### Case Study Dredging of access channel to estuarine port



|                                                        | <b>Option I</b>        | Eqv.<br>carbon<br>'cost' | Option II                 | Eqv.<br>carbon<br>'cost' | Difference in<br>C 'cost'<br>impact (euro) |
|--------------------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|--------------------------------------------|
| Carbon emitted by dredgers                             | 8,200 MgC              | 246,000                  | 2,730 MgC                 | 81,900                   | 164,100                                    |
| Carbon 'lost' (long<br>term exposure to<br>atmosphere) | 30,000 MgC             | 900,000                  | 6,000 MgC                 | 180,000                  | 720,000                                    |
| Carbon uptake capacity removed                         | 900 MgC/yr<br>(300 ha) | 27,000<br>euro/yr        | 180 MgC /yr<br>(60 ha)    | 5,400<br>euro/yr         | 21,600<br>euro/yr                          |
| Carbon uptake<br>capacity planted as<br>compensation   | _                      | _                        | (long term)<br>180 MgC/yr |                          | 5,400<br>euro/yr                           |
|                                                        |                        | Furopean Dree            | daina Associati           | on 2016                  |                                            |





# Conclusion

**European Dredging Association 2016** 

WODCON XXI – june 13-17, 2016, Miami, FL

Slide 25

#### Blue Carbon



An Innovative Instrument for CO<sub>2</sub> Policy

| <ul> <li>Blue carbon:</li> <li>✓ oceans &amp; coastal biotopes that are <u>natural</u><br/><u>carbon sinks</u> (mangroves, seagrasses, salt<br/>marshes, coral reefs, etc.);</li> <li>✓ <u>captures atmospheric CO<sub>2</sub> through the plants'</u><br/>photosynthesis;</li> <li>✓ <u>stores carbon in the long-term through the natural</u><br/>growth processes in the ecosystems' plants and<br/>animals (respectively the gross primary and<br/>secondary productions).</li> </ul> | <ul> <li>Prerequisites</li> <li>✓ Establishment of Market Based Measures (MBM);</li> <li>✓ Political recognition (IMO, EU); and</li> <li>✓ direct link (market certification) to MBM;</li> <li>✓ Functioning MBM market.</li> </ul>                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><u>CO<sub>2</sub> emissions reduction</u>:</li> <li>✓ emissions reductions cannot be disconnected from global economy (and global trade);</li> <li>✓ <u>-40% by 2050 are impossible to achieve if only acting on the emission sources;</u></li> <li>✓ Blue Carbon reduces CO<sub>2</sub> atmospheric concentrations</li> <li>= offsetting opportunities that can <u>be bought/sold</u>.</li> </ul>                                                                               | <ul> <li>Side benefits</li> <li>✓ Ecosystems provide a range of valuable other (ecosystem)services</li> <li>✓ Pro-active integration in nature-based coastal development project (eg Building with Nature)</li> <li>✓ Interesting projects</li> </ul> |

**European Dredging Association 2016** 







⇒Blue Carbon should be part of sustainable strategies for carbon management in coastal zones !

⇒Pro-active carbon management includes either:
 ⇒Project based replanting (strategy 2)
 ⇒Upfront investment in large-scale carbon uptake (strategy 3)

Pro-active carbon management using nature based design (eg Building with Nature) provides opportunities to the dredging industry!

**European Dredging Association 2016** 





### **Thank you !**

European Dredging Association:

148 Avenue Grandchamp, B-1150 Brussels e-mail: <u>info@euda.be</u> Tel.: +322 6468183 Fax : +322 6466063

• Website:

www.european-dredging.eu

**European Dredging Association 2016** 

More on Building with Nature @:



www.ecoshape.nl



Vlaamse Baaien Veilig, natuurlijk, aantrekkelijk, duurzaam, ontwikkelend

www.vlaamsebaaien.com

WODCON XXI – june 13-17, 2016, Miami, FL

Slide 28





# EUROPEAN DREDGING ASSOCIATION

- founded in 1993
- represents the European Dredging Companies
- from 16 EU Members States
- world leaders (top 4)
- with a turnover (2014): €9.2 bn
- +/- 25,000 European direct employment
- >50,000 indirect employment (supply and service companies)

"EuDA is the official interface between the European dredging industry and the European Institutions"

#### Coastal Biotopes provide various Ecosystem Services



| <b>Ecosystem services</b> $\checkmark$ : Yes; $(\checkmark$ ): maybe. | Mangrove<br>forests | Salt<br>marshes | Seagrass<br>beds |
|-----------------------------------------------------------------------|---------------------|-----------------|------------------|
| Ecological:                                                           |                     |                 |                  |
| - erosion protection                                                  | $\checkmark$        | $\checkmark$    | $\checkmark$     |
| - barrier saline intrusion                                            | $\checkmark$        | $\checkmark$    |                  |
| - bird colonies                                                       | $\checkmark$        | $\checkmark$    |                  |
| - carbon sequestration                                                | $\checkmark$        | $\checkmark$    | $\checkmark$     |
| - water purification                                                  | $\checkmark$        | $\checkmark$    | $\checkmark$     |
| Economic:                                                             |                     |                 |                  |
| - nursery for fish                                                    | $\checkmark$        | $\checkmark$    | $\checkmark$     |
| - habitat fish                                                        | $\checkmark$        |                 | $\checkmark$     |
| - grow seafood                                                        | $\checkmark$        | $\checkmark$    | $\checkmark$     |
| - bees/honey                                                          | $\checkmark$        |                 |                  |
| - construction material                                               | $\checkmark$        |                 |                  |
| - fire wood                                                           | $\checkmark$        |                 |                  |
| - potential for trading CO <sub>2</sub> emission rights               | $\checkmark$        | $\checkmark$    | (✔)              |
| Social:                                                               |                     |                 |                  |
| - plants for medicine                                                 | $\checkmark$        |                 |                  |
| - support local community ('commons')                                 | $\checkmark$        |                 |                  |
| - bird watching                                                       |                     | $\checkmark$    |                  |
| - ecological/underwater 'tourism'                                     | (✔)                 | $\checkmark$    | $\checkmark$     |



# Carbon market programmes



| Regulatory/<br>Voluntary | Remarks                                                                                        | carbon price<br>(euro/MgCO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regulatory               | Certified Emission Rights (CERs) can be<br>used for compliance with Kyoto<br>commitments       | Approx. 20                                                                                                                                                                                                                                                                                                                                                                                     |
| Regulatory               | EU market mechanism to comply with<br>Kyoto (cap and trade) (industry, power<br>generation,)   | 8 - 25                                                                                                                                                                                                                                                                                                                                                                                         |
| Regulatory               | Regulatory initiatives (cap and trade)                                                         | 8-12                                                                                                                                                                                                                                                                                                                                                                                           |
| Voluntary                | Companies, individuals, events, buy<br>emission certificates directly or via<br>carbon traders | 8-20                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | European Drodging Association 2016                                                             |                                                                                                                                                                                                                                                                                                                                                                                                |
| ]                        | Regulatory/<br>Voluntary<br>Regulatory<br>Regulatory<br>Voluntary                              | Regulatory/<br>VoluntaryRemarksRegulatoryCertified Emission Rights (CERs) can be<br>used for compliance with Kyoto<br>commitmentsRegulatoryEU market mechanism to comply with<br>Kyoto (cap and trade) (industry, power<br>generation,)RegulatoryRegulatory initiatives (cap and trade)VoluntaryCompanies, individuals, events, buy<br>emission certificates directly or via<br>carbon traders |



#### Mimicking Nature Islands and Human Activities



Natural or artificial islands fulfil ecologic, economic, logistics and coastal management functions and provide additional space for:
Ports (including safe place of anchorage/refuge);
Agriculture, Fisheries – Aquaculture;
Industrial and Manufacturing Activities;
Residence & Tourism – Cultural and Recreational Activities;
Nature (unique nature reserves, unique ecosystems);
Military Activities – Security related Activities.

Islands can also provide:

Coastal protection services (e.g. reducing coastal erosion);

<sup>©</sup>Mineral and Energy Resources.

Artificial islands or peninsulas are designed for multiple purposes.

**European Dredging Association 2016**