

Developments for sustainable dredging equipment

WODCON XXI, Miami
Erik van der Blom& M. Boor
The technology innovator. Royal IHC

Innovation at Royal IHC

Innovation drivers:

Lower costs

Sustainability

Sustainable innovations

Emission regulations

Sustainability

Underwater sound

Sustainable innovations

Emission regulations

Sustainability

Underwater sound

Emission reduction

- Exhaust gas emission regulations (SO_x, NO_x)
- Energy Efficiency Design Index (CO₂)
- Sustainability ambitions

Emission reduction

How to comply to emission regulations:

- Switch to Marine Diesel Oil:
 - ⇒ 30-50% more expensive than HFO
- Switch to Low Sulphur Heavy Fuel Oil:
 - ⇒ limited availability
 - ⇒ higher cost price
- Use Heavy Fuel Oil:
 - ⇒ after treatment of exhaust gasses necessary
 - ⇒ high investment costs
 - ⇒ poor earn back potential
- **Use LNG**

- Compared to heavy fuel oil LNG reduces:
 - SO_x emission by 99%
 - NO_x emission by 85%
 - CO₂ emission by 25%
 - Particulate Matter by 99%
- Compliant to SO_x, NO_x and EEDI regulation
- More sustainable than other emission reduction measures
- Earn back potential due to lower price

LNG hopper

LNG storage:

LNG storage:

- LNG storage needs 2-3x more space than diesel storage
- Tank volume vs. autonomy vs. bunkering frequency
- Position and type of LNG tank:
 - Below / above deck
 - Single / double walled
 - Safety zones
- Large impact on vessel lay out

Load step capability:

Diesel engines have better load step capability than LNG engines

Load step capability:

- Diesel engines have better load step capability than LNG engines
- Additional measures might be needed (e.g. temporary energy storage)
- Load step capability dependent on engine type
- IHC performed load step tests on several DF engines:
 - Wärtsilä 6L20DF + 6L34DF
 - ABC DF 16 DZD

- LNG storage
- Load step capability
- Ship design and configuration
- Safety regulations and certification
- Availability of LNG
- Bunkering
- Maintenance and operational use

LNG hopper dredgers

LNG hopper dredgers

Sustainable innovations

Emission regulations

Sustainability

Underwater sound

- Fuel costs are approx. 30% of total operational costs
- Long term focus on hull resistance reduction

- Fuel costs are approx. 30% of total operational costs
- Long term focus on hull resistance reduction
- Hull resistance vs. transport capacity vs. cost price

Resistance reduction with bulbous bow

Resistance reduction on aft ship

The need for dredging automation...

The need for dredging automation...

Trailspeed Controller:

- Maintains ship speed at constant level
- Constant ship speed is essential for steady dredging process
- Improves safety, steersman can concentrate on marine traffic

Trailspeed Controller:

- Maintains ship speed at constant level
- Constant ship speed is essential for steady dredging process
- Improves safety, steersman can concentrate on marine traffic

Eco Pump Controller:

- Prevents pump from cavitation
- Actively controls pump speed to optimize production and fuel consumption

The impact of dredging automation...

Sustainable innovations

Emission regulations

Underwater sound

Turbidity reduction

The problem...

Turbidity and air

The problem...

Turbidity and air

B. Decrop, 2015:

"the presence of air bubbles in the overflow has the potential to increase the surface plume concentrations with a factor 5 to 10"

Development of Airless Overflow:

- Reduce turbidity plume by reducing air bubbles in the overflow
- Prevent possible damages resulting from air underneath the vessel

Small lab tests to identify flow regimes and understand air enclosement

- Free flow
- No moving parts
- Easily replaceable add-on

Prototype test on Easydrege 2700

Conclusions

- Sustainability is an import driver for innovation at Royal IHC
- Emission regulations will have impact on ship design
- LNG is a sustainable and feasible answer to strict emission regulations
- Hull shape optimization contributes to fuel saving and exhaust gas emission reduction
- Intelligent dredging automation contributes to both higher production and lower fuel consumption
- Airless overflow contributes to turbidity reduction

Thank you for your attention

