

FEASIBILITY STUDY OF A TRAILING SUCTION HOPPER DREDGER'S SHIPPING PARAMETERS - ANALYSIS BY PROGRAMMING

Author: Sheng Li, Chong-lin Tao, Wei Li, Kai-feng Liu CCCC SHANGHAI DREDGING CO.,LTD

Contents

INTRODUCTION

CALCULATION

Calculating mud volume in hopper

Fitting increasing curve of mud in hopper

Ideal production efficiency calculation

Fuel consumption calculation per 10000 m³

Reference method

WORKING PRINCIPLE

CONCLUSIONS

The trailing suction hopper dredger's working time is divided into two parts : the dredging time and the sailing time. Usually, the sailing distance is fixed, and the sailing time is fixed too. So how to control dredging time based on the mud increasing condition in hopper to improve the production efficiency of the whole working cycle is the problem we need to solve.

The solution method I propose is calculating the dredging time based on construction parameters by programming.

1、Calculating mud volume in hopper

Ship's draft and the liquid level height in hopper are gathered by sensors and liquid level radars. Using these two parameters the mud volume in hopper can be calculated through the displacement method.

$$W = \frac{G - V \times r_W}{r_S - r_W}$$

G—ship displacement (t); V—hopper capacity (m^3); r_w —water density, take1.025 (t/m³); r_s —undisturbed soil density (t/m³).

1、Calculating mud volume in hopper

But during shipping process, there is a lot of turbulence in the hopper when pumping the slurry in, which makes the liquid level height gathered by radar fluctuates a lot and further leads to errors in the hopper capacity, so the mud volume calculated through displacement method is not accurate.

In order to calculate the mud volume in hopper accurately, we need to correct the liquid level height. The specific method is : do correcting based on the mud shipping stage and the height changing situation of the overflow weir.

After comparison tests for several kinds of methods, the most accurate correction process is summed up.

Liquid level height correction process

CALCULATION PRINCIPLE

1、Calculating mud volume in hopper

2、Fitting increasing curve of mud in hopper

The mud volume in hopper can be calculated accurately based on corrected hopper capacity. We calculates the mud volume in hopper each 10s, and according to all of the calculated mud volume values, we can figure out one equation which describes the increasing trend of mud load in hopper through the least square method.

Set mud increasing curve equation is:

$$y = ax^2 + bx$$

x—dredging time (10s); y—mud volume in hopper (m³).

Set y_{real} as real mud volume in hopper; Set S as sum of variance of y_{real} and y, then:

$$S = \sum_{i=1}^{n} (y_{real} - y_i)^2 = \sum_{i=1}^{n} (y_{real} - ax_i^2 - bx_i)^2$$

3

2、Fitting increasing curve of mud in hopper

When S is minimal, the coefficients a and b fit the increase trend of mud in hopper, so according to the extreme principle, calculate the partial derivative of a and b respectively, and the partial derivative equals to 0:

$$\frac{\partial S}{\partial a} = \sum_{i=1}^{n} \left(2x_i^4 a - 2x_i^2 y_{real} + 2x_i^3 b \right) = 0 \qquad \frac{\partial S}{\partial b} = \sum_{i=1}^{n} \left(2x_i^2 b - 2x_i y_{real} + 2x_i^3 a \right) = 0$$

By setting simultaneous equations, the calculation formula for *a* and *b* can be obtained:

$$a = \frac{\sum x_i^2 \times \sum x_i^2 y_{real} - \sum x_i^3 \times \sum x_i y_{real}}{\sum x_i^2 \times \sum x_i^4 - \sum x_i^3 \times \sum x_i^3} \qquad b = \frac{\sum x_i y_{real} - \sum x_i^3 a}{\sum x_i^2}$$

When the value of *a* and *b* is calculated out, the curve fitting the increasing trend for mud in hopper can be obtained.

3、Ideal production efficiency calculation

In order to achieve the best production efficiency, the ship should control the dredging time based on the mud volume in hopper and the sailing time. In here, we fit the increasing curve of mud in hopper and use the derivative algorithm to find out the ideal dredging time.

3、Ideal production efficiency calculation

The key point of the derivative algorithm is to find out the tangent point on the mud loading curve with the line which crosses the zero point.

3、 Ideal production efficiency calculation

The calculation principle

Mud loading equation: $y = a \times (x-c)^2 + b \times (x-c)$

Tangent equation: $y = n \times x$

a and b are coefficients

```
c is the time of sailing time (10s);
```

x is dredging time of the current ship load(10s);

n is the slope of the tangent,

$$n = \frac{dy}{dx} = 2a(x-c) + b$$

CALCULATION PRINCIPLE

3、Ideal production efficiency calculation

By setting simultaneous equations of above formulas, the tangent point can be obtained.

$$x_{\tan gentpoint} = -\frac{\sqrt{a^2c^2 - abc}}{a}$$

Use $x_{tangentpoint}$ to minus sailing time *c*, the ideal dredging time can be obtained.

$$x_{ideal} = x_{tan gentpo int} - C$$

The ideal production efficiency is:

$$p_{ideal} = \frac{ax_{ideal}^2 + bx_{ideal}}{x_{tan gentpoint}} = \frac{a(x_{tan gentpoint} - c)^2 + b(x_{tan gentpoint} - c)}{x_{tan gentpoint}}$$

4、Fuel consumption calculation per 10000 m³ of mud removal

 During production, the fuel consumption is made up of sailing and dredging fuel consumption and is mainly calculated based on instantaneous diesel engine power.

sailing and mud discharging fuel consumption (t): $y_{sailing} = \sum_{n=0}^{c} \frac{194.3 \times 10 \times (w_{left} + w_{right})}{10^6}$

dredging and shipping fuel consumption (t): $y_{dredging} = \sum_{n=c}^{x-c} \frac{194.3 \times 10 \times (w_{left} + w_{right})}{10^6}$

fuel consumption per 10000 m³ mud (t/10000m³): $T_{fuelconsumption} = \frac{y_{sailing} + y_{dredging}}{a(x-c)^2 + b(x-c)} \times 10000$

194.3 is the instantaneous fuel consumption of the diesel engines (g/kw*h); c is the time of sailing (10s); x is dredging time of the current ship (10s); w_{left} and w_{right} are respectively the instantaneous power of portside and starboard engines (kw).

CALCULATION PRINCIPLE

4、 Fuel consumption calculation per 10000 m³ of mud removal

Increasing trend of construction fuel consumption

5、Reference method for production efficiency and fuel consumption per 10000m³

When the fuel consumption is the lowest, the production efficiency is the best and the ship should stop loading and start transporting at this moment when the economy is the best.

5、Reference method for production efficiency and fuel consumption per 10000m³

During actual construction, the operators should pay attention to the following points:

(3) The discrete of fuel consumption will decline gradually and keep horizontal.

LAN

Server

Analysis

computer

During project construction, if calculate the ideal production efficiency by hand, the calculation process is complicated and the result is not visual. In order to calculate automatically, we need a calculation program to do this work accurately and quickly.
The trailing suction hopper dredger construction technology
The calculation principle
Write the automatic calculation program by VBScript

The ideal production efficiency

CHINA COMMUNICATIONS

Key technology

Use winsock control and scktcP communication protocol to transfer data

The server side program sends data and the client grogram monitors this over the whole course of events which makes the data transmission happen in real time and be stable.

Proposed for the first time:

Correcting principle for the hopper capacity

Fitting increasing curve of mud in hopper with the least square method

Calculating ideal production efficiency with derivative algorithm

Calculating fuel consumption based on instantaneous diesel engine power

This program records construction parameters and do calculation every 10s which can balance the processor pressure and give accurate calculation results.

CONCLUSIONS

Today I introduce the automatic calculation principle for production efficiency and fuel consumption per 10000m³ of mud and other key project construction parameters. And also introduce the key technology and running process of the automatic calculation program. I hope to share my experience to colleagues around the world to promote the level of the trailing suction hopper dredger's construction technology and to establish a wonderful world.

THANK YOU