

Cutting fuel consumption in the design stage of hopper dredges

WODCON XXI 2016, Miami Leonard den Boer, Royal IHC

The technology innovator.

- 1. Operational profiles
 - Real-life project
 - Standard project (Standard Dredge Cycle)
- 2. Fuel Consumption Tool
- 3. Comparison of drive trains

Understand the operational profile...

Real-life project

& Marine Engineering

Real-life project

1. Operational profiles

- Real-life project
- Standard project (Standard Dredge Cycle)
- 2. Fuel Consumption Tool
- 3. Comparison of drive trains

Standard Dredge Cycle

How to define a **Standard Dredge Cycle**?

Use measurement data.

Cycle distribution (based on thousands of dredge cycles)

	Operating Time
Sailing	35%
Dredging	34%
Mooring/maneuvering	8%
Discharge	19%

Average power (based on 18 different dredge projects)

	Operating Time	
Propulsion	35%	
Main engines	62%	

Standard Dredge Cycle

15.0 sailing dredging sailing shorepumping Ship speed [knots] 10.0 5.0 0.0 01:00:00 00:15:00 00:30:00 01:15:00 01:30:00 01:45:00 00:45:00 02:00:00 Time 6000 shorepumping sailing dredging sailing 5000 propellers 4000 dredge pump Power [kW] jet pump 2000 1000 generator 00.00.00 00.15:00 00:30:00 00:45:00 01:00:00 01.15:00 01:30:00 01:45:00 02:00:00 Time

- 1. Operational profiles
- 2. Fuel Consumption Tool
- 3. Comparison of drive trains

Fuel Consumption Tool

Fuel Consumption Tool

Fuel consumption:

- Drive train 1
- Drive train 2
- Drive train 3
- Drive train 4

Input:

•

۲

power generator

power jetpump

power pump

- 1. Operational profiles
- 2. Fuel Consumption Tool
- 3. Comparison of drive trains

How much fuel can be saved with alternative drive trains?

Drive trains to be compared:

- Normal drive train
- Alt.1 TwoSpeedGearbox
- Alt.2 CombinatorCurve
- Alt.3 Hybrid
- Alt.4 TwoSpeedGearbox + CombinatorCurve + Hybrid

Assumptions:

- Same sailing speed during cycle
- Same hull shape
- Same production

111111

CPP drive train +

TwoSpeedGearbox

Alt.1 TwoSpeedGearbox

Propulsion

- Only propeller higher efficiency
- Low power > Low rpm ٠
- High power > High rpm •

Alt.1 TwoSpeedGearbox

Standard Dredge Cycle

TRAFT!

CPP drive train +

combinator curve

Combinator curve: Lower speed and larger propeller pitch

Alt.2 CombinatorCurve

CPP Hybrid drive train

CPP CPP Hybrid Only engine more fuel efficient, I Consumed ۲ 100% 100% propulsion power Total fuel 100% 98.5% consumption Engine Electric efficiency (e-motor, drive, cables, generator) 100% 100 fuel consumption [g/kWh] engine speed 100% 90 1 engine 90% engine speed 65-100% 80 engine speed 30-100% Efficiency 70 80% 60 .96 Power [%] 2 engines 💒 70% 50 40 197 202 60% 20730 212 22020 50% 240 10 0% 20% 40% 60% 80% 100% 2803502880 Power 300 350 400 450 500 550 600 650 750 700 Speed [rpm]

	СРР	CPP TSG+CC+H
Consumed propulsion power	100%	78%
Total fuel consumption	100%	88%

Energy label

Comparison of drive trains

В

D

Real life project

	СРР	CPP TwoSpeed Gearbox	CPP Combinator Curve	CPP Hybrid	CPP TSG+CC	CPP TSG+CC +Hybrid
Consumed propulsion power	100%	75%	87%	100%	71%	71%
Total fuel consumption	100%	92%	92%	95%	87%	83%
Energy label	D	C	C	C	B	A
Standard Dre	edge (Cycle			12	1.1
Standard Dre	edge (CPP	Cycle CPP TwoSpeed Gearbox	CPP Combinator Curve	CPP Hybrid	CPP TSG+CC	CPP TSG+CC +Hybrid
Standard Dre	edge (CPP 100%	CPP TwoSpeed Gearbox 79%	CPP Combinator Curve 95%	CPP Hybrid 100%	CPP TSG+CC 78%	CPP TSG+CC +Hybrid 78%

Comparison of drive trains

World's first hopper dredgers with Two Speed propulsion Gearbox...

Conclusions

- Engines and Propulsion often used at partial loads
 > Opportunity for fuel optimization
- Standard Dredge Cycle is defined
 - Based on many measured dredge cycles
- With Fuel Consumption Tool drive trains can be compared
- Alternative drive trains can result in **significant fuel savings**
 - 17% fuel saving with Two Speed Gearbox, Combinator Curve and Hybrid drive train
- World's first hopper dredgers with Two Speed Gearbox ordered by DEME under construction at Royal IHC