

Intensive Management of Dredged Material to Maximize Storage Capacity of a Confined Disposal Facility in Savannah Harbor, Georgia – A Success Story

K. Badu-Tweneboah, Ph.D., P.E. and R. G. Mijares, Ph.D., P.E. Geosyntec Consultants, Inc., Jacksonville, FL, USA K. W. Cargill, P.E. KW Cargill, P.A., Punta Gorda, FL, USA

Geosyntec.com

engineers | scientists | innovators

Project Location and Background

- Dredging-Related Infrastructure at Elba Island
- Dredging and Disposal Challenges
- Prediction of DMCAs Life
- Evaluation of Disposal Options
- Implementation of Intensive DMCA Management
- Conclusions & Recommendations
- Questions

Presentation Outline

Project Location

Savannah, GA

0 mi

Savannan Rice

Geosyntec.com

5.0 mi

Project Background - Site History and Operations

- July 2003 Feb 2006: Elba II Expansion Construction and in Service
- Sep 2006 2010: Elba III Expansion Phase A Construction and in Service
- 2014 2015: Elba III Expansion Phase B Cancelled
- 2013 2016: Elba Liquefaction Project Design, FERC Permitting, Construction, and in Service

- Elba Island Historical Island in Savannah River, predominantly salt marsh
- Converted to a dredge material disposal area post WWII
- LNG Facility was established in 1978 and recommissioned in 2001
- 1 of 8 LNG delivery terminals in nation
 0.3 billion m³ (11.2 billion ft³) of LNG storage

Elba Liquefaction Project

engineers | scientists | innovators

- Turning Basin Approx. 13 ha (33 ac) conforming with U.S. Coast Guard minimum (FERC Recommendation)
- Ship Slip Approx. 18 ha (44 ac), berths for 2 ships simultaneously
- DMCA 1 Approx. 52 ha (130 ac), dike last raised 2011, current dike elevation of 15.2 m (50 ft) MLW, being used for disposal
- DMCA 2 Approx. 48 ha (120 ac), dike last raised 2009, being intensively managed for drying and material harvesting since 2011, current dike elevation of 13.4 m (44 ft) MLW

Ship Slip and Turning Basin

engineers | scientists | innovators

Dual Ship Off-loading

Confined Disposal Facilities (DMCAs)

Permit Requirements

Ship Slip

- -13.4 m (-44 ft) *min* to -14 m (-46 ft) *max*, MLW dredge depth
- 0.6 m (2 ft) allowable overdredge
- 344,000 m³ (450,000 yd³) annual dredge volume

Turning Basin

- -12.2 m (-40 ft) *min* to -12.8 m (-42 ft) *max*, MLW dredge depth
- -0.6 m (2 ft) allowable overdredge
- 612,000 m³ (800,000 ft³) annual dredge volume
- Hydraulic cutterhead dredge with upland disposal

2014 Dredging Permit

Hydraulic Cutterhead Dredge

- Maintain required dredged depths year round
 - -11.6 m (-38 ft) MLW minimum
 - 0.15 m (0.5 ft) under keel clearance
- Post-Panamax vessels (Q_{max} and Q_{flex})
 - -12.2 m (-40 ft) MLW drafts
 - 0.6 m (2 ft) under keel clearance
- Typical 1-month notification of LNG Tanker ship coming
- With liquefaction, ships will leave more frequently
- Huge Financial Penalty if ship cannot come or dock

Historical Maintenance Dredging Volumes

Long-Term Dredged Material Management Plan (DMMP)

- Prediction of DMCAs Life using PSDDF Software Program by USACE
- Impact of Increased Frequency of Dredging
 - Rapid Filling of DMCAs
 - Less Time for Consolidation and Desiccation
 - Changes to Dike Raising Schedules
- Dike Raising Constraints
 - Maximum Dike Height of 18.9 to 20.7 m (62 to 68 ft) MLW
 - Stability Constraints (marginal FS at 20.7 m (68 ft) MLW)
 - Availability of Fill Material

Disposal Challenges

Prediction of Storage Capacity & Life

- Objective is to calculate how in-situ sediment volumes in river convert to in-situ dredged material volumes in DMCA over time
- Need to know:
 - Void ratios of sediment in river and dredged material after water decantation
 - Desiccation Limit of dredged material
 - Relationship between void ratio and hydraulic conductivity and between void ratio and effective stress for dredged material
- Analyze dredging disposal and drying cycles using USACE model PSDDF (*Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill*)

Prediction of DMCA Life Theoretical Background

- Primary Consolidation: governing equation
 - $\left(\frac{\gamma_s}{\gamma_w} 1\right) \frac{d}{de} \left[\frac{k(e)}{1+e}\right] \frac{\partial e}{\partial z} + \frac{\partial}{\partial z} \left[\frac{k(e)}{\gamma_w(1+e)} \frac{d\sigma'}{de} \frac{\partial e}{\partial z}\right] + \frac{\partial e}{\partial t} = 0$
 - k(e) is the coefficient of soil permeability as a function of void ratio (e)
- Secondary Compression

$$S_{s} = \frac{C_{\alpha}}{(1+e_{0})}(h) \log\left(\frac{t}{t_{p}}\right)$$

- Desiccation Processes
 - $\Delta W' = CS (C'_E \cdot EP) + (1 C_D)RF$
 - $\Delta W'$ is the water lost during first-stage drying,
 - CS is water supplied from lower consolidating soil,
 - C_E' is the maximum evaporation efficiency,
 - EP is Class A pan evaporation,
 - C_D is the drainage efficiency, and RF is the rainfall

Void ratio distribution immediately after placement of new lift (Cargill 1985)

Site-Specific Geotechnical Data

Measured Specific Gravity Values of Dredged Material from DMCAs

Sample ID	Measured G _s	Reference
Comp. B	2.552	June, 2011, Composite sample near weir of Samples 5 & 6
Comp. C	2.407	June, 2011, Composite sample from Pit 2 of Samples 8 & 9
P41-06	2.631	April, 2012, Jar sample 6" below desiccated crust in DMCA 2
P41-12	2.583	April, 2012, Jar sample 12" below desiccated crust in DMCA 2
P42-06	2.641	April, 2012, Jar sample 6" below desiccated crust in DMCA 2
P42-12	2.609	April, 2012, Jar sample 12" below desiccated crust in DMCA 2
P43-06	2.619	April, 2012, Jar sample 6" below desiccated crust in DMCA 2
P43-12	2.585	April, 2012, Jar sample 12" below desiccated crust in DMCA 2
P44-06	2.599	April, 2012, Jar sample 6" below desiccated crust in DMCA 2
P44-12	2.657	April, 2012, Jar sample 12" below desiccated crust in DMCA 2
A2 @ 9 ft	2.552	December 2013, Tube sample at berm outside DMCA 2
A3 @ 9 ft	2.537	December 2013, Tube sample at berm outside DMCA 2
A5@3ft	2.572	December 2013, Tube sample at berm outside DMCA 2

Site-Specific Geotechnical Data

Sample ID	Measured w (%)	Calculated e	Reference			
TB-01	228.6	5.9	2011 Tier II Sediment Investiga	stigation		
TB-02	294.9	7.6	2011 Tier II Sediment Investiga	tion		
TB-03	279.9	7.2	2011 Tier II Sediment Investiga	tion		
TB-04	248.9	6.4	2011 Tier II Sediment Investiga	tion		
TB-05	231.8	6.0	2011 Tier II Sediment Investiga	tion		
SS-09	250.0	6.4	2011 Tier II Sediment Investigation			
SS-10	265.0	6.8	2011 Tier II Sediment Investigation			
SS-11	317.3	8.2	2011 Tier II Sediment Investigation			
SS-12	331.5	8.6	2011 Tier II Sediment Investiga	tion		
L1D1	405.7	10.5	2013 Bed-Leveling Research			
L1D2	415.2	10.7	2013 Bed-Leveling Research			
L2D1	375.6	9.7	2013 Bed-Leveling Research	San		
Average	of calculated	l: e=7	7.8	1		

Calculated Void Ratios of Sediments and Dredged Material

Sample ID	Measured Water Content, W	Calculated, e	Reference
Weir-5	399.2	10.3	Sample near the weir end of DMCA 1
Weir-6	422.2	10.9	Sample near the weir end of DMCA 1
Pit 2-7	391.7	10.1	Sample ¼ DMCA length from dredge pipe
Pit 2-8	429.8	11.1	Sample ¼ DMCA length from dredge pipe
Pit 2-9	440.9	11.4	Sample ¼ DMCA length from dredge pipe
Pit 2-10	400.1	10.3	Sample ¼ DMCA length from dredge pipe
Averag	e of calculate	d: e=	10.7

DMCAs Life Prediction Using PSDDF Model

DMCA 2 - Mudline Elevation Prediction Model

DMCAs Life Prediction Using PSDDF Model

	Comments			Thickness Deposited (ft)		Estimated Life	
Cases			Dredging			Expectancy	
			Event			DMCA 1	DMCA 2
				DMCA 1	DMCA 2	El. 62 ft	El. 62 ft
Case 1	2 dredging events per year:	1	April	3.94	4.22	$\Delta nr 25$	Oct-24
Case 1	SS and TB	2	October	3.94	4.22	Apr-23	
	2 dradaina avanta non voor	1	March	2.63	2.82		Nov-24
Case 2	S and TP	2	July	2.63	2.82	Jul-25	
	SS and TB		November	2.63	2.82		
	3 dredging events per year: SS	1	March	1.07	1.15		Jul-50
Case 3		2	July	1.07	1.15	Mar-49	
		3	November	1.07	1.15		
Case 4	3 dredging events per year: SS	1	March	3.4	3.65		
		2	July	3.4	3.65	Mar-25	Mar-27
	2 areaging events per year. Th		November	1.07	1.15		
Notes: SS = Ship Slip; TB = Turning Basin							

Evaluation of Disposal Options

- Bed leveling (agitation dredging) in ship slip
 - Research (NW 5) Permit issued in January 2012
 - o Study Period: April 2012 thru May 2013
 - o Allow more drying time in DMCA by increasing time between dredging events

Negotiations with USACE & GDOT

- Use of SC DMCAs for dredged material disposal
- Ship Slip and Turning Basin are for a single user

Ocean Disposal

 Intensive management of DMCA drainage and dredged material harvesting

- Concepts developed during last DMCA 1 dike raising in 2011
- Concepts currently being implemented in DMCA 2 since 2011
- Final objective is system steady state where volume capacity of DMCA is perpetually restored between dredging

- Rapid removal of decanted water and constant removal of rainfall and drainage water
- Use of specialty equipment to remove dredged material at perimeter to promote more rapid development of interior desiccated crust
- Continued removal of desiccated crust within approximately 60 m (200 ft) DMCA perimeter
- Development of interior borrow pits for material mining as possible
- Hauling desiccated and consolidated material to stockpile areas outside DMCAs for further drying and processing

Construction Equipment Being Used

- Marsh (Swamp) Buggies 2
- Long-Reach Excavators 4
- Trackhoe Excavator 1
- 25-ton Off-Road Trucks 2 to 4
- Track Harrow (for disking) 2
- Bulldozers 2

Implementation – Decanted Water

engineers | scientists | innovators

Implementation – Long-Reach Excavators

Implementation – Track Harrow

Tracking Consolidation and Settlement

Tracking Consolidation and Settlement

On-going Settlement in DMCA 2

Material Harvesting Efforts in DMCA 2

Survey Date	DMCA 2 Capacity to El. 40 ft MLW (CY)	Net Capacity Increased (CY)	Cost	\$/CY of Capacity Gained	Dike Raising Equivalent to Capacity Gained (ft)
August 2011	316,279	N/A	N/A	N/A	N/A
April 2013	1,285,361	969,082	\$ 2,546,936	\$ 2.63	4.8
May 2015	1,946,142	660,781	\$ 5,180,006	\$ 7.84	3.3
TOTAL	N/A	1,629,863	\$ 7,726,942	\$ 4.74	8.0

Survey Date	Material Harvested (CY)	Material Stockpiled (CY)	Material Recovery (%)	\$/CY of Material Harvested	\$/CY of Material Generated	
August 2011	N/A	N/A	N/A	N/A	N/A	
April 2013	405,399	NM ⁽²⁾	NM ⁽²⁾	\$ 6.28	NM ⁽²⁾	
May 2015	459,862	253,930	55%	\$ 11.26	\$ 20.40	
TOTAL	865,262	NM ⁽²⁾	NM ⁽²⁾	\$ 8.93	NM ⁽²⁾	

Conclusions & Recommendations

Conclusions

- Increase in available disposal capacity
- Potential increase in anticipated life of DMCA 2
- Generation of fill material for dike raising
 - Beneficial reuse of dredged sediments

Recommendations

- Duplicate effort in DMCA 1
- Subdivide DMCA 2 to facilitate ditching within the interior portion of the DMCA
 - Provides additional opportunity to achieve system steady state where volume capacity of DMCA is perpetually restored between dredging

Geosyntec.com

engineers | scientists | innovators

Questions

