

WODCON XXI One Or More Solutions For Cutting Forces In Clay & Rock

Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology & Associate Professor of Dredging Engineering

Delft University of Technology

Goals & Targets

Problem Definition

In rock cutting the rock will fail either by brittle shear failure or by brittle tensile failure. How do these failure mechanisms depend on the UCS and the BTS values of the rock and how is the transition between those two mechanisms.

Solution

At high UCS/BTS ratios there is brittle tensile failure, at low ratios there is brittle shear failure. In between there is an area where both may occur simultaneously, resulting in the chip type of cutting process.

Delft University of Technology Offshore & Dredging Engineering

Rock Cutting Introduction

Delft University of Technology Offshore & Dredging Engineering

Rock Cutter Heads

Brittle versus Ductile

lft

Failure Mechanisms

Delft University of Technology Offshore & Dredging Engineering

Brittle Shear Failure/Shear Type

Brittle Tensile Failure/Tear Type

Shear & Tensile Failure/Chip Type

FUDER Delft University of Technology Offshore & Dredging Engineering

Shear Failure/Shear Type Peak Forces

Delft University of Technology – Offshore & Dredging Engineering

Brittle Shear Failure/Shear Type

Delft University of Technology

Forces on the Layer Cut

Delft University of Technology Offshore & Dredging Engineering

Forces on the Blade

Resulting Cutting Forces

$$c = \frac{UCS}{2} \cdot \left(\frac{1 - \sin(\phi)}{\cos(\phi)}\right)$$

$$C = \frac{c \cdot h_i \cdot w}{\sin(\beta)}$$

$$\beta = \frac{\pi}{2} - \frac{\alpha + \delta + \phi}{2}$$

$$F_h = \frac{2 \cdot c \cdot h_i \cdot w \cdot \cos(\phi) \cdot \sin(\alpha + \delta)}{1 + \cos(\alpha + \delta + \phi)} = \lambda_{HF} \cdot c \cdot h_i \cdot w$$

$$F_v = \frac{2 \cdot c \cdot h_i \cdot w \cdot \cos(\phi) \cdot \cos(\alpha + \delta)}{1 + \cos(\alpha + \delta + \phi)} = \lambda_{VF} \cdot c \cdot h_i \cdot w$$

Faculty of 3mE - Dredging Engineering

Delft University of Technology Offshore Engineering

Stresses on the Shear Plane

Faculty of 3mE - Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Failure Criteria The Mohr Circle

Failure Criteria

The Mohr circle can never cross or touch one of the failure criteria. These criteria are:

• The shear failure criterion.

• The tensile failure criterion.

If the Mohr circle touches or crosses one of the failure criteria, failure will occur.

TUDelft Delft University of Technology Offshore Engineering

Faculty of 3mE - Dredging Engineering

The Mohr Circle, BTS=-15 MPa

Delft University of Technology – Offshore & Dredging Engineering

Tensile Failure/Tear Type Peak Forces

Delft University of Technology – Offshore & Dredging Engineering

The Mohr Circle, BTS=-5 MPa

UCS=100 MPa, BTS=-5 MPa, α =60°, φ =20°, h_i=0.1 m & w=0.1 m

Delft University of Technology Offshore & Dredging Engineering

Brittle Tensile Failure/Tear Type

The Reduced Mohr Circle

The Mohr circle can never cross or touch one of the failure criteria. So if it crosses the tensile strength criterion, tensile failure will occur.

This can be modeled by defining a mobilized shear strength (cohesion) that creates a Mohr circle just touching the tensile strength criterion, based on the tensile strength.

This mobilized cohesion however also results in a different shear angle β .

Faculty of 3mE - Dredging Engineering

The Reduced Mohr Circle, BTS=-5 MPa

UCS=57 MPa, BTS=-5 MPa, α =60°, φ =20°, h_i=0.1 m & w=0.1 m

Delft University of Technology – Offshore & Dredging Engineering

Mobilized Shear Strength

$$F_{h} = \frac{2 \cdot \mathbf{c}_{m} \cdot \mathbf{h}_{i} \cdot \mathbf{w} \cdot \cos(\varphi) \cdot \sin(\alpha + \delta)}{\cos(\alpha / 4) + \cos(\alpha + \delta + \varphi)} = \lambda_{HT} \cdot \sigma_{T} \cdot \mathbf{h}_{i} \cdot \mathbf{w}$$

$$F_{v} = \frac{2 \cdot \mathbf{c}_{m} \cdot \mathbf{h}_{i} \cdot \mathbf{w} \cdot \cos(\varphi) \cdot \cos(\alpha + \delta)}{\cos(\alpha + 4) + \cos(\alpha + \delta + \varphi)} = \lambda_{VT} \cdot \sigma_{T} \cdot \mathbf{h}_{i} \cdot \mathbf{w}$$

$$\mathbf{c}_{\mathbf{m}} = \frac{\sigma_{\mathrm{T}}}{\left(\frac{\sin\left(\frac{\alpha+\delta-\phi-\pi/4}{2}\right)}{\cos\left(\frac{\alpha+\delta+\phi-\pi/4}{2}\right)} - 1\right) \cdot \left(\frac{1-\sin(\phi)}{\cos(\phi)}\right)}$$
$$\mathbf{\beta} = \frac{\pi}{2} - \frac{\pi/4 + \alpha + \delta + \phi}{2}$$

Faculty of 3mE - Dredging Engineering

The Reduced Mohr Circle, BTS=-5 MPa

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology – Offshore & Dredging Engineering

Two Solutions?

The Mohr Circles, BTS=-14 MPa

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology

The Mohr Circles, Lower Limit

Delft University of Technology – Offshore & Dredging Engineering

The Mohr Circles, Upper Limit

Delft University of Technology – Offshore & Dredging Engineering

The Horizontal Cutting Force

UCS=100 MPa, α =60°, ϕ =20°, h_i=0.1 m & w=0.1 m

Delft University of Technology – Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering © S.A.M

The Vertical Cutting Force

UCS=100 MPa, α =60°, ϕ =20°, h_i=0.1 m & w=0.1 m

Delft University of Technology – Offshore & Dredging Engineering

Shear & Tensile Failure/Chip Type

FUDER Delft University of Technology Offshore & Dredging Engineering

Delft University of Technology Offshore & Dredging Engineering

Lower & Upper Limits

UCS=100 MPa, BTS=-20 MPa, α =60°, φ =20°

Conclusions

- Below the UCS/BTS lower limit there is always shear failure.
- Above the UCS/BTS upper limit there is always tensile failure.
- Between the two limits there is most probably a combination of both failure mechanisms as is present in the Chip Type.

Offshore Engineering

TUDelft Delft University of Technology Offshore Engineering

Delft University of Technology – Offshore & Dredging Engineering

Questions?